The ability of a species to colonize newly available habitats is crucial to its overall fitness1-3. In general, motility and fast expansion are expected to be beneficial for colonization and hence for the fitness of an organism4-7. Here we apply an evolution protocol to investigate phenotypical requirements for colonizing habitats of different sizes during range expansion by chemotaxing bacteria8. Contrary to the intuitive expectation that faster is better, we show that there is an optimal expansion speed for a given habitat size. Our analysis showed that this effect arises from interactions among pioneering cells at the front of the expanding population, and revealed a simple, evolutionarily stable strategy for colonizing a habitat of a specific size: to expand at a speed given by the product of the growth rate and the habitat size. These results illustrate stability-to-invasion as a powerful principle for the selection of phenotypes in complex ecological processes.
Microalgae are feedstocks for multiple product development based on algal biorefinery concept. The effects of light quality (white, red and blue light emitting diodes) and macro-element starvations on Chlorella sp. AE10 were investigated under 20% CO2 and 850 µmol m-2 d-1. Nitrogen and phosphorus starvations had negative effects on its growth rate. The biomass productivities were decreased from day 1 and the highest one was 1.90 g L-1 d-1 under white light conditions. Phosphorus starvation promoted carbohydrate accumulation under three LED light sources conditions and the highest carbohydrate content was 75.9% using red light. Blue light increased lutein content to 9.58 mg g-1. The content of saturated fatty acids was significantly increased from 37.51% under blue light and full culture medium conditions to 77.44% under blue light and nitrogen starvation conditions. Chlorella sp. AE10 was a good candidate for carbohydrate and lutein productions.