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Abstract

            Untangling the complex variations of microbiome associated with large-scale host phenotypes or envi ronment

              types challenges the currently available analytic methods. Here, we present , an integrative framework basedtmap

            on topological data analysis for populat ion-scale microbiome stratification and association studies. The performance

               of in detecting nonlinear pattern s is validated by different scenarios of simulation, which clearly demonstratetmap

             its superiority over the most commonly used methods. Application of to several population-scaletmap

          microbiomes extensively demonstrates its strength in re vealing microbiome-associated host or environmental

              features and in understand ing the system atic interrelations among their association patterns. is available attmap

https://github.com/GPZ-Bioinfo/tma p.
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Background

    Microbiome-wide association studies (MWAS) capture
       the variation and dynamics of microbiome associated with

        host phenotypes or environment types [ ]. In order to1–5

    identify underappreciated but significant microbiome-
     associated host factors, comprehensive sample metadata

       of large-scale populations are usually collected [6–10]. For

       instance, the gut microbiomes of a healthy population
        were shown to be associated with hosts stool consistency’

       and medication, which may confound the identification of

      disease-related markers [ ]; and links among microbiome,7
       metabolome, and diet of individual hosts were character-

        ized with a crowdsourced cohort of over 10,000 citizen

       scientists [ ]. However, these analyses failed to account6
     for different association patterns among subpopulations

        [11] without methods for mapping a myriad of host

    phenotypes to complex microbiome profiles.

     Identifying association patterns in a high-dimensional

      space of both population-scale host phenotypes and
      microbiome features pose s challenges to existing analy tic

        methods for microbiome analysis [ , ]. Most of the12 13

     currently available methods, such as metagenomeSeq

        [ ], [ ], [ ], [ ], and14 DESeq 2 15 Metastats 16 LEfSe 17 MaA-

         sLin [ ], are mainly based on either statistical test for18

     differential microbiome abundanc e or line ar regression
     to identify associated covariates. Differential abunda nce

     testing examines each microbiome feature individually

     without considering correlations among taxa [ ].14–19
      Alternatively, dimension reduction methods can be used

      to project high-dimensional microbiome profiles to low-

      dimensional spaces for pattern discovery and association,
       such as principal coordinates analysis (PCoA) and princi-

       pal component analysis (PCA) [ ]. The resulted ordin-13

         ation axes can be utilized by linear regression to identify
     microbiome-associated host covariates using the envfit

         method in the vegan package [20]. There are also methods

       using distance matrix of microbiome beta-diversity for as-
        sociation analysis by fitting linear models to the distances

       or testing dissimilarities between groups, such as adonis
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         and ANOSIM [ , ]. These linear methods may not be21 22
       able to capture nonlinear patterns of host-microbiome as-

     sociation in a high-dimensional microbiome dataset.
     Stratification of population-scale human microbiome has

         been use d to re veal subgroups of hosts with distinct micro-

       biome c onfigurati ons such as the identification of entero-
      types [23]. Current methods for microbiome stratification

      or clustering analysis include partition-based clustering (for

      instance, k-means and k-medoids c lustering) and Dirichlet
      multinomial mixture (DMM) models [11, 23–25]. How-

        ever, these methods have limitations when applied t o high-

      dimensional datasets. For example , k-means clustering may
       fail to separate nonlinear local manifold structures imbed-

        ded in a high-dimensional space [26], while the distribution

          assumption of DMM may not be fully met in real micro-
       biome datasets [11]. Moreover, these two methods are

      unsupervised and divide microbiome samples into groups

       regardless of their associated metadata. Thus, to perform
    sophisticated stratif ication of population-scale microbiome

         samples, it is necessary to develop methods that can iden-

         tify nonlinear local structures and can be supervised by host
phenotypes.

        Here, we present tmap, a method based on topological

      data analysis and network representation for stratification
     and associatio n study of high-dimensional microbiome

        data. This method is motivated by using advanced large-

        scale data mining tec hniques to capture subtle and non-
      linear patterns of high-dimensional datasets [27–30]. We

       adopted t he Mapper algorithm for topological data analysis

       (TDA) [ ], which has demonstrated its powerful abilities31
       in analyzing complex biological and medical data [32–35].

        This algorithm allows us to construct an informative and

     compact network representation of high-dimensional data-
         set. We developed tmap to ex tend the algorithm for micro-

        biome study and utilize the network representation as an

      integrated framework for both association and stratification
      of population-scale microbiome data. This framework en-

         ables us to identify association of taxa or metadata within

       the e ntire network and to extract enric hment subnetworks
       of different association patterns. We validated the perform-

       ance of tm ap in detecting nonlinear host-microbiome asso-

      ciation in different scenarios using synthetic mic robiome
        data. Our method successfully identified most of the simu-

        lated nonlinear assoc iations, which are hard to be detected

         with other methods (a verage ROC AUC of 0.95, 0.55, 0.8 9,
        and 0.63 for tmap, ,envfit adonis, and ANOSIM respect-

       ively). Applying tmap to two population-sc ale human gut

       microbiome data sets of the Flemish Gut Flora Project
       (FGFP) [7] and Ame rican Gut Project (AGP) [6] extensively

      d e m o n s t r a t e d i t s s t r e n g t h s i n i d e n t i f y i n g n o n l i n e a r p a t -

      ter ns a nd s ub pop ula t ion enr ich me n ts of mi cr obi a l t axa
     a n d i n r e v e a l i n g m i c r o b i o m e s t r a t i f i c a t i o n s a s s o c i a t e d

         w i t h l i f e s t y l e s . W e a l s o a p p l i e d t m a p t o a  n e v e n l a r g e r

       s c a l e d a t a s e t o f t h e E a r t h M i c r o b i o m e P r o j e c t ( E M P )

       [5] t o i l l u s t r a t e t h e m u l t i s c a l e i n t e r r e l a t i o n s a m o n g e n -
 v i r o n m e n t t y p e s .

Results
       tmap was developed as an integrative framework for

     a n a l y z i n g p o p u l a t i o n - s c a l e m i c r o b i o m e d a t a t o i d e n t i f y
     a s s o c i a t i o n o f h o s t p h e n o t y p e s w i t h h i g h - d i m e n s i o n a l

    m i c r o b i o m e p r o f i l e s a n d m i c r o b i o m e s t r a t i f i c a t io n

      e n r i c h e d w i t h h o s t p h e n o t y p e s o r e  n v i r o n m e n t t y p e s .
       U n d e r l y i n g i s a b i o i n f o r m a t i c p i p e l i n e o f t o p o -t m a p

      l o g i c a l d a t a a n a l y s i s a n d n e t w o r k e n r i c h m e n t a n a l y s i s

        f o r t h e d i s c o v e r y a n d v i s u a l i z a t i o n o f t  h e p a t t e r n s o f
      m i c r o b i o m e v a r i a t i o n . T h e w o r k f l o w o f t m a p c o n s i s t s

          o f t h r e e m a j o r s t e p s ( F i g . 1) . T h e f i r s t s t e p u s e s t h e

     M a p p e r a l g o r i t h m [ 3 1 ] ( F i g . 2 a , s e e t h e “M e t h o d s ”

     s e c t i o n f o r d e t a i l s ) t o t r a n s f o r m h i g h - d i m e n s i o n a l
       m i c r o b i o m e p r o f i l e s i n t o a T D A n e t w o r k t o r e p r e s e n t

        t h e m i c r o b i o m e v a r i a t i o n . A n o d e i n t h e n e t w o r k r e p -
        r e s e n t s a g r o u p o f s a m p l e s w i t h h i g h l y s i m i l a r m i c r o -

         biome profiles, a nd a link between two nodes indicates that

        common samples are shared between the two groups of
        samples corresponding to the nodes. Therefore, a TDA net-

       work captures both local (as local connections between

       nodes) and global (as global connections between nodes)
        patterns of microbiome varia tion. The second step uses a

        modified version of the spatial analysis of functional enrich-

       ment (SAFE) a lgorithm [36] (Fig. 2b, see the “Methods” sec-
          tion for details) to map the values of a target variable

       (metadata or microbiome features) into the TDA network

      to generate its subnetwork enrich ment scores (designated
         SAFE scores, one score on each node individually). For a

          g i v e n t a r g e t v a r i a b l e , s u c h a s a g e , a S A F E s c o r  e o  n a

      n o d e q u a n t i f i e s , s t a t i s t i c a l l y , t h e e n r i c h m e n t l e v e l o f
i t s v a l u e s i n t h e s a m p l e s b e l o n g i n g t o t h e s u b n e t w o r k

       c e n t e r e d a r o u n d t h e n o d e ( d e t e r m i n e d b y a t h r e s h o l d

      o f n e t w o r k n e i g h b o r h o o d , s e e t h e “ M e t h o d s ” s e c t i o n
         f o r d e t a i l s ) . T o g e t h e r , a l l t h e S A F E s c o r e s o f a t a r g e t

        v a r i a b l e f o r m a v e c t o r o f v a l u e s , m  e a s u r i n g a l l l o c a l

         e n r i c h m e n t l e v e l s o n a l l t h e n o d e s i n a T D A n e t w o r k .
          I n t h  e l a s t s t  e p o f t m a p , v e c t o r s o f S A F E s c o r e s f o r

       e a c h m e t a d a t a o r m i c r o b i o m e f e a t u r e s c a n b e c o m -

       p a r e d t o e a c h o t h e r t o c h a r a c t e r i z e t h e i r i n t e r r e l a t i o n s ,
      r e f l e c t i n g t h e s i m  i l a r i t i e s o f t h e i r e n r i c h m e n t p a t t e r n s

          i n t h e n e t w o r k . T h i s s t e p a l l o w s u s t o r a n k d r i v e r t a x a

       of microbiome variation, t o perform ordination analysis of
       SAFE scores, and to calculate co-enrichment relations be-

      tween metadata and microbiome features. With tmap, one

         can explore how mic robiome and the host a re associated at
        different scales, a nd analyze how different host factors are

       related to each other attributable to the corresponding

       microbiome variations. The utility of tmap framework in
      analyzing the datasets of synthetic microbiomes, human

       gut microbiomes, and the earth microbiome will be

    demonstrated and discussed as follows.
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     Detecting nonlinear enric hment and association pattern s

  in synthetic microbiomes

        We first applied on synthetic datasets to evaluatetmap

       its ability to detect microbiome enrichment and associ-
       ation patterns. In order to simulate microbiomes follow-

       ing the distribution of species diversity and abundance
        in real datasets , we used [ ] to gener ateSparseDOSSA 37

       synthetic microbiome data, which is a Bayesian hierarch-

      ical model and estimates species abundance parameters
       based on training microbiomes [ , ]. The synthetic37 38

     datasets closely resembled their training microb iome

       data as shown in PCoA (Bray-Cu rtis dissimilarity, Add-
        itional file : Figure S1). Based on these synthetic1

       datasets, we sim ulated host factors associated with the

      microbiomes in different scenarios, including linear or
         nonlinear associatio ns, or the mix of both of them (see

       the section ). After that, the performa nce of“Method s”

       tmap in identif ying the simulated associa tions was com-
       pared with the most commonly used methods (including

       envfit adonis, , and ANOSIM) to validate the advantage

    of in nonlinear settings.tmap

        In the case of detec ting linear associa tions, andtmap

       the othe r methods in comparison exhibited similar per-

         formance (ave rage ROC AUC of 1.00 for all of the m,
         Fig. d, e). We further evaluate the perfo rmance of3 tmap

      in detecting nonline ar associations via simula ting differ-

      ent nonlinear enrichment patterns in a microbiome
     landscape. Both symme tric and asymmetric multiple

        (two or three) local enrichments were included in our

      simulation for the detec tion of nonlinear association s
         (Fig. a c). The organization of the centers of the loca l3 –

     enrichments in each simulated association determines

         the strength of either linear or nonlinear effect of the

       association. For instance, an association pattern of sym-
       metric multiple local enrichments can be detected by

       nonlinear methods, while the projection of this pattern
         to any linear direction will result in an averaged linear

         effect of almo st zero (Fig. a, c). In contrast, asymmetric3

       multiple local enri chments can be detected by nonlinear
         methods and also by linear meth ods bec ause of the aver -

        aged linear effect greater than zero (Fig. b). Different3

      performances in detecting the simulated nonlinear asso-
       ciations were obser ved for the four methods (average

          ROC AUC of 0.95, 0.55, 0.89, and 0.63 for , ,tmap envfit

      adonis, and ANOSIM respectively, Fig. e, Add-3
          itional file : Table S1, Additional file 2: Figure S2). Al-20

        though achieved an average ROC AUC of 0.89,adonis

         which is the best among the three methods in compari-
       son, still significan tly improved upon (aver-tmap adonis

       age AUC of 0.95, value = 8.11ep −29    , Addit ional file :2

        Figure S2). The weaker performance of and theadoni s

          other two methods is most likely due to the linear re-
      gression technique used by these methods [ ],20 – 22

       which can only identify linear association between host
       factors and microbiome variatio n. In contrast, istmap

      based on network en richment analysis, which can

       analyze both linear and nonlinear association s. At last,
         we evaluated all the methods in a more realistic scenario

       that consist s of both line ar and nonlinear associations

       (see the section). Like the above nonlinear-“Methods”

        only scenario, still had a significantly better out-tmap

         come in this mixed scenario (average ROC AUC of 0.98,

         0.82, 0.93, and 0.73 for , , , and ANO -tmap envfit adonis

        SIM respecti vely, Fig. e, Additio nal file : Table S1,3 20
       Additional file : Figure S2). Similar impro vement by2

        tmap over the other three methods was observed when

                 Fig. 1 Overview of workflow for integrative microbiome data analysis. The workflow transforms high-dimensional microbiome profiles intotmap

                 a compressive topological network representation for microbiome stratification and association analysis. The first step uses the algorithmMapper

                     (Fig. a, see the section for details) to construct a TDA network from high-dimensional microbiome profiles. The second step uses the2 “Methods”

                       SAFE algorithm (Fig. b, see the2 “Methods” section for details) to map the values of metadata or microbiome features to the network to generate

                  their vectors of SAFE scores. The last step performs ranking, ordination, and co-enrichment analysis to characterize interrelations among metadata

       or microbiome features based on their SAFE scores
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       we varied the number of simulated metadata associated
        with the microbiome (Additional file : Figure S2). Over-2

        all, can detect both linear and nonlinear micro-tmap

     biome associations with compa rable performance, based
       on network en richment analysis rath er than linear re-

       gression. As validated in the synthetic microbiome s, our
        method is capable of detecting vario us kinds of associ-

       ation microbiom e patterns. Moreover, in addition to the

       patterns of multiple local enrich ment, is alsotmap

       capable of detecting other type s of nonlinear patterns,
        such as circula r or spiral enrichments (Additional file :19 

      Text S1, Additional file : Figure S3).3

     Improving identification of human gut microbiome

    stratifications associated with host covariates

        Host factors may be associa ted with gut microbiome in
         different ways, loca l or global, line ar or nonlinear. In the

         study of the Flemish Gut Flora Project (FGFP), it was

        shown that only about 7.63% of the microb iome vari-
        ation can be explained by the identif ied host covariates

        using linear association mod els [ ]. was applied to7 tmap

        analyze the FGFP cohor t data aimi ng at improving the
     identification and interpretation of such popula tion-scale

    microbiome-host associatio ns, especially in discerning

   nonlinear and loca l patterns.

                       Fig. 2 Schematic illustration of the and SAFE algorithms used by . The algorithm comprises five steps. First, data points ofMapper tmap a Mapper

                    high-dimensional microbiome profiles (such as OTU table) are taken as input. Then, projection of the high-dimensional data points to a low-

                         dimensional space ( as shown in the figure) is performed by using a function (such as PC1 of PCoA). The step partitions the low-R filter covering

                      dimensional space into overlapping covers to bin a subset of data points within them. After that, is conducted to cluster data pointsclustering

                     within each cover into different clusters based on their distances in the original high-dimensional space. The last step constructs a TDA network

                      from the result of clustering analysis, in which node represents a cluster of data points and link between nodes indicates common data points

                     between clusters. The SAFE algorithm comprises three steps. Starting with a TDA network, it maps the values of metadata or microbiomeb

                    features into the network as node attributes (e.g., average ). Second, subnetwork enrichment analysis is performed for each node to analyzeage

                   its significance of the observed enrichment pattern via network permutations. This analysis is performed for each target variable (metadata or

                    microbiome features) respectively. The last step is the calculation of SAFE score ( ) via log transformation and normalization of the significanceO

                level of the observed enrichment. More details of these two algorithms are provided in the section“Methods”
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       Overall, host covariates identif ied by showed atmap

       consistent overlap with that identified by , particu-envfit

         larly for the covariates ranked in the top 19 (Kendall s’
      tau, cutoff value = 0.05,p R 2       = 0.50, Fig. a). Like that in4 

         the origina l study, Bristol stool scale (BSS) score is the

      top asso ciated cov ariate id entified by . However ,tmap

        there were differences in the ranking of several host
      covariates, including time since previous relief, mean

       corpuscular hemoglobin (MCH), and shift work (Fig. a).4
         We speculate that the differ ence might be due to nonlin-

        ear association patterns that are captured by buttmap

        not by . Th e observed differences were also sup-envfi t

        ported by and ANOSIM, except for time sinceadonis

       previous relief, which showed a weak and non-

      significant association with the microbiomes in ANO -
            SIM ( value = 0, value = 0.10, Addit ional file : Fig ureR p 4

         S4, Additional file : Table S2). We also noticed that21

         ANOSIM was unable to detec t mos t of the host covari-
         ates (only six among the total 69 covariates, cuto ff p

          value = 0.05, FDR corrected [ ]) that are found to be39

       significantly associated with the microbiomes by all the
          other methods (67 of total 69 covariates, cutoff value =p

        0.05, FDR corrected, Additional file : Table S2). As21

         shown in the TDA network, we found that the enrichment

         scores of time since previous relief are lower compared to
       other highly enriched covariates (Fig. e). These low4

          scores can be explained by the large variance of time since
        previous relief observed among samples in the local sub-

         networks (Additional file : Figure S5). On the other hand,5

         enrichment scores of MCH are comparable to that of BSS,
        consistent with their ranking by although the rank-tmap

          ing of MCH by is much lower (Fig. b, c).envfit 4

       Associations identified by can be further strati-tmap

       fied into subgr oups in the microbiome landscape to
   characterize subpop ulat ion-specific microb iome features.

         For instance, pet past 3 month s appeared to be enriched
       within two subgroups (Fig. d), characterized by differ-4

      ent enriched gener a. and wereSalmonalla Yersinia

         found to be enriched in the first group, where as Anaero-

      fustis Acetanaerobacteriu mand were enriched in the
        second group (Additional file : Table S3). These ob-22

       servations are supported by previou s studies, in which
      Salmonalla Yersiniaand were often isolated from

       healthy cats and dogs [ ]. and40 Anae rofustis Acetan aero-

        bacterium wer e also found in healthy pets and human
         gut, but their influence is yet to be understood [41  , ].42

       Taken togethe r, allows the identification of hosttmap

      covariates with multiple enrichment subgr oups and their

                  Fig. 3 Performance of in detecting linear and nonlinear patterns of simulated microbiome associations. Four scenarios of associationstmap

                between metadata and synthetic microbiome (generated with [ ]) are simulated. Gaussian mixture with three symmetricSparseDOSSA 37 a d–

                 centers; Gaussian mixture with three asymmetric centers; Gaussian mixture with two symmetric centers; linear association. Simulation of nonlinear

                     associations is based on mapping the Gaussian mixtures to the first two PCs of the PCoA (principal coordinates analysis) of synthetic microbiome.

                    Linear associations between metadata and synthetic microbiome are simulated based on linear function of the first two PCs. Arrow indicates a

                      linear projection of the values of simulated metadata (scaled by -squared using ). Significance levels and effect sizes of ( value andR envfit envfit p

R2                        ) and ( value and SAFE enriched score) are depicted. SAFE enriched scores are normalized (divided by the sum of SAFE scores). Colortmap p

                     legend (from blue to red) indicates values of metadata (from small to large). Receiver operating characteristic (ROC) curves of the performancee

                  of (red) and (green), (yellow), and ANOSIM (blue) in detecting microbiome-associated metadata. Three scenarios of associationtmap envfit adonis

                    are examined, including linear-only (dash-dot line), nonlinear-only (dotted line), and a mix (solid line) of both. The shaded areas indicate 95%

                 confidence intervals (100 repeats). Performance is measured by ROC AUC (mean ± sd) for each method and simulation
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       related microbiome features, which may help to explain
     microbiome variability among subpopulations and identify

      specific biomarkers for disease diagnosis and treatment.

    Systematic characterization of interrelations between

       host covariates and microbiome taxa based on more

    efficient stratification and associ ation analyses

     Systematic characterization of interrelations among host
        factors correlated to the gut microbiota is val uable in

    understanding host-microbiom e intera ction. By trans-
         forming the values of host factors into SAFE scores, we

        were able to qua ntify the relations betw een host factors

       and tax a. Principal component analysis showed that the
     overall enrich ment patterns (represented by SAF E

         scores) are explained mainly by the top genera as identi-

      fied by SAFE enriched scores, including Faecalibacter-

      ium Rumino coccus Bacteroides, unclassified , and (Fig. a,5
       Additional file : Table S4). Therefore, mapping the23

         taxa abunda nce to the TDA network (by SAFE scores of
        taxa) allows us to identify driver species tha t contribute

        to microbiome variation and to understand how they are

        related to each other by PCA. This analysis also

       confirmed the important host covar iates identified in the
        original study, such as gender, hemoglobin, time since pre -

         vious relief, and HDL cholesterol (Fig. 5a, Additional file 6:

        Figure S6). We further analyzed their interrelations via co-
        enrichment network analysis of their SAFE scores (see the

        “ ”Methods section). The result sh owed that male was co-

    enriched with Roseburia, ,Blautia Fa ecalibacter ium, and
      hemoglobin, whereas female was c o-enriched with unclassi-

    fied Bifidobacteriaceae, unc lassified Bacillales, Alistipes, and

        HDL cholesterol (Fig. 5b, c). These results are consistent
      with the well-documented facts that serum hemoglobin

        concentration in healthy male is often higher than female,

        whereas healthy female tends to have higher HDL choles-
          terol [43, 44]. By including both taxa and the related host

      factors in co-enrichment network analysis, a systematic

         view can be obtained to illustrate the association of blood
       parameters and gender with the gut microbiome, which

       would be valuable for understanding their possible inter-

   action or confounding effect.
       Disease and medicat ion have been found to contribute

       significantly to gut microbiota variatio n [ , ]. With45 46

       tmap, we also explo red how dise ase, medication, and

                   Fig. 4 Stratification of the FGFP microbiomes associated with host covariates. Ranking of host covariates associated with the FGFPa

                   microbiomes. The ranking is compared between (middle panel, according to SAFE enriched score) and (right panel, according totmap envfit

                   squared correlation coefficient). In the left panel, covariates that are statistically consistent between the two rankings are colored blue (Kendall s’

                      tau, cutoff value = 0.05). In the middle panel, covariates are colored based on metadata category. TDA network enrichment patterns (SAFEp b e–

                    scores) of the covariates of Bristol stool score, mean corpuscular hemoglobin concentration, pets past 3 months, and time since previous relief,

                     respectively. Node color is based on SAFE scores of corresponding covariates, from red (large values) to blue (small values). The scale of

                    enrichment of mean corpuscular hemoglobin concentration appears to be comparable to that of Bristol stool score, and both are ranked among

                      the top five covariates. Nonlinear patterns of multiple local enrichments are observed for pets past 3 months and time since previous relief, which

      are ranked differently between andtmap envfit
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        microbiome would relate to each other in the FGFP
        cohort. The original study only found that β-lac tam a nti-

        biotic caused significant increase in the abundance of spe-
         cific genera. Our analysis identified seven out of the 13

      drugs significantly co-enriched with three diseases, along

       with different associated microbiomes (Fig. d, e). For5
      instance, both osmotic laxatives and -lactam antibioticβ

       were co-enriched with chronic fatigue syndrome, but with

       distinct subnetworks of the microbiome (Fig. d, e),5
     highlighting the possibility of drug-specific microbiome

        response. We also found that commonly used drugs for

       ulcerative colitis (UC), such as the anti-inflammatory drug,
     immune system suppressors, and -lactam antibioticsβ

        were co-enriched with UC, and are associated with differ-

      ent microbiomes. These results demonstrated that tmap

       may improve systematic and integrative analysis of micro-
        biome and host phenotypes based on more efficient strati-

   fication and association methods.

     In-depth stratification of human gut microbiome

    associated with country and lifestyle

      Human gut microbiom e from differ ent countries was
       shown to form cluste rs of distinct community compos i-

        tions, which were proposed as enterotypes [ ]. As a23

       means of stratificatio n of human gut microbiome, clus-
        tering approach has been use d for enterotype an alysis to

     identify microbiome configurations with distinct re-

        sponses to drugs or diets [ , , ]. Altern ativel y,11 23 47
      tmap provides another stratification appr oach based on

       enrichment patterns of taxa abundanc e. We applied both

       approaches to the microbiom e data from the American
      Gut Project (AGP), which comprises microbi ome sam-

        ples from over 10,000 citizen scien tists [ ]. The results6

         showed tha t both appr oaches wer e able to reveal a global
      pattern of stratifications in the microbiom e landscape,

         driven by different taxa (Fig. a, b). In addition,6 tmap

       also detected local in-depth stratifications of samples and

                    Fig. 5 Systematic analysis of interrelations between taxa and host covariates of the FGFP microbiomes. PCA (principal component analysis) ofa

                      the SAFE scores of taxa and host covariates shows the overall pattern of their associations with microbiome. The top 10 covariates and taxa

                     identified by SAFE enriched scores are highlighted (markers with edge color of gray) and annotated with their names. Host covariates are colored

                         based on metadata category, and taxa are in red. Marker size is scaled according to the SAFE enriched score of metadata or taxa. , Co-b c

                   enrichment networks of gender and other co-enriched host covariates and taxa, for female and male respectively. The networks reveal the

                   interrelations between gender and other covariates or taxa when considering their associations with the FGFP microbiomes. Edge width of the

                       network is scaled according to the negative log-transformed value of Fisher s exact test of co-enrichment. Color and size of the nodes are thep ’

                    same as that of PCA plot. Co-enrichments between disease and medication. For instance, ulcerative colitis is co-enriched with six differentd

                     drugs. On the other hand, amoxicillin and enzyme inhibitor (J01CR02) is co-enriched with three different diseases. Colors are based on their co-

              enrichment subnetworks. Subnetworks of disease-medication co-enrichments. The identified co-enrichments are highlighted in the TDAe

                    network of the FGFP microbiomes with different colors. Co-enrichment relations of a same color indicates that they are co-enriched in a

 same subnetwork
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        their driver taxa (Fig. a). For instance, the Firmicutes6

        enterotype (ET F) was subdivided into several local strati-
       fications enriched with different taxa of Firmicutes, in-

    cluding Roseburia, Clostridium cluster IV, unc la ssif ied

    Lachnospiraceae, Coprococcus Ruminococcus, , and unclas-
       sified Ruminococcaceae (Additional file : Table S5). In24

      contrast to enterotype stratification requiring the number

         of clusters to be set before analysis [ ], automatic-23 tmap

       ally identifies stratifications of samples based on taxa
        SAFE scores and the TDA network of microbiome. Our

     approach to stratifying microbiome variations according
         to the enrichment patterns of taxa can help to alleviate

       the problem of inferring discretized enterotypes from the

      continuous changes of microbiome taxa [ ]. Further48
       e x a m i n a t i o n o f t h e s e E T F l  o c a l s t r a t i f i c a t i o n s r e v e a l e d

       the ir assoc ia tion s w ith ho s t c ova ria tes . Ex ist enc e o f ET

        F l o c a l s t r a t i f i c a t i o n s w a s a l s o o b s e r v e d i n t  h e F G F P
       m i c r o b i o m e s ( A d d i t i o n a l f i l e 7 : F i g u r e S 7 ) . T h i s i m p l i e s

      t h a t a u g m e n t i n g k n o w n e n t e r o t y p e s w i t h t h e s e l o c a l

     s t r a t i f i c a t i o n p a t t e r n s w i l l f u r t h e r d i s s e c t p o  p u l a  t i o n -
      sca le m icr obi ome var iat ion s for th e id e nt if ic ati on of

    s t r a t i f i c a t i o n - s p e c i f i c m ic r o b i o m e m a r k e r s a n d t h e i r

   l i n k s w i t h h o s t p h e n o t y p e s .

     Stratification of a population-scale micro biome could

      be attribute d to interaction s between host phenoty pes
       and the gut microbiota [ ]. We performe d ordination11

        analysis of the SAFE scores to reveal the interrelations

        between the host covariates and taxa accounting for the
       variation of the AGP microbiomes (Additional file :8

         Figure S8, see the section ). Two of the most“Methods”

       prominent host covariates are countrie s (USA or UK),
      which were co-enriched with di fferent microbial taxa

       (Fig. c). For instance, USA samples were co-enric hed6

      with , whereas UK samples were co-enriche dBacteroi des

    with uncla ssified . Th ese co-enric hedRumin ococcaceae

        taxa have also been identifi ed in the above enterotype

      and stratification analy sis, indicating that the stratifica-
        tion is most likely associate d with countries. As reported

      in previous studies, is an enterotype-drivenBacteroides

        genus and has been associate d with a carnivorou s dietary
        h a b i t [ 2 3 , 4 7 ] . W i t h t h e a v a i l a b l e m e t a d a t a o n h o s t

       l i f e s t y l e s a n d d i e t a r y h a b i t s , w e a l s o p e r f o r m e d c o -

      e n r i c h m e n t n e t w o r k a n a l y s i s b a s e d on t h e i r S A F E
       s c o r e s ( s e e t h e “ ”Me thod s s e c t i o n ) . T h e r e s u l t e d n e t -

         w o r k s s h o w e d t h a t m o s t o f t h e h o s t f a c t o r s a n  d t a x a

       wer e co -en ric hed w ith two h ubs , cor re spo n di n g to the

                   Fig. 6 In-depth analysis of enterotype-like stratification of the AGP microbiomes and association with lifestyles. Stratification of the AGPa

                       microbiomes based on enriched taxa. For each node in the TDA network, the most enriched taxon among all taxa is identified according to SAFE

                     enriched score. Each node is colored according to its most enriched taxon. Only taxa enriched in more than 100 nodes are highlighted.

                   Remaining unstratified nodes (with no enriched taxa) are colored in gray. Stratification based on traditional enterotype analysis. Nodes areb

                     colored according to enterotype driver taxa. Stratification based on countries (USA or UK). Not enriched (or unstratified) nodes are colored inc

                    gray. The number in the color legend indicates the number of nodes in the corresponding stratification. Co-enrichment networks of lifestyled f–

                  factors and taxa. Co-enrichments with countries (USA or UK) are highlighted and extracted. The extracted co-enrichment subnetworks reveal that

                    different lifestyle factors are interrelated to the two countries when accounting for the AGP microbiomes. Node colors are based on metadata

             category. Node size and edge width are the same as that of Fig. 5
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       two countries (Fig. 6d–f). The co-enrichments reflect differ-
        ent life styles associated with the two countries. For instance,

       UK samples were co-enriched with homecooked meals fre-
       quency (da ily), milk cheese frequency (daily), whole gra in

       frequency (daily), and vegetable frequency (daily). On the

       other hand, USA samples were co-enriched with antibiotic
      history (6 months), multivitamin, and unspecified alcohol

      types. Together, the co-enrichment networks indic ate that

        the stratification of the AGP microbiomes ca n be further
       linked to lifestyles associated with different countries. This

        analysis de monstrated the strength of tmap in providing an

      integrative framework both for stratifying microbiomes and
       for illustrating the interrelations among host factors c ontrib-

   uting to the stratification.

      Illustrating the multiscale pattern of the earth

   microbiome and environment types

        In addition to the human gut microbiome datasets ana-
        lyzed above, we also applied to the large-scaletmap

      microbiome samples from the Earth Microbiome Project

        (EMP) to extract their ecological patterns [ ]. The original5

       study elucidated a multiscale pattern of microbiome diver-
        sity of different environment types. In addition, via com-

     bination of well-established microbial ecology knowledge
         [49, ] and the observed microbial diversity of the EMP50

       samples, the EMP Ontology (EMPO) was proposed for

     the classification of environmental microbiome samples
        [ ]. Our re-analysis found that the SAFE enriched scores5

        of metadata were consistent with their EMPO levels; that

      is, larger scores (reflecting bigger enrichment subnet-
         works) correspond to lower levels, and vice versa (Fig. a,7

         b). As expected, classes of EMPO level-1 were ranked at

          the top, followed by classes of EMPO level-2, and then by
          EMPO level-3 (Fig. a). We also found that some of the7

     Environment Ontology (ENVO) descriptors had SAFE

       enriched scores comparable to that of EMPO classes
        (Fig. b). For instance, the ENVO level-1 descriptors of7

        terrestrial and aquatic biome were ranked among the top,

        close to EMPO level-1 classes. But these ENVO descrip-
        tors were associated with different subnetworks to that of

        EMPO (Additional file : Figure S9), indicating that they9

      can classify environmental microbiomes in a different

                   Fig. 7 Systematic characterization of the multiscale pattern of environment types associated with the Earth s microbiomes. Ranking of EMPO,’ a

                     ENVO, and other metadata based on SAFE enriched score. Metadata is colored based on their categories. The relative order of EMPO classes

                       among the ranking is highlighted by surrounded rectangles in gray. PCA of SAFE scores of EMP metadata and taxa. The top 10 metadatab

                      identified by are highlighted (markers with edge color of gray) and annotated with their names. Marker size is scaled according to SAFEtmap

                        enriched score. Colors of metadata are the same as that in the ranking, and taxa are in red. Co-enrichment network of EMPO classes. Nodec

                         colors are based on EMPO classes. Edge width of the network is the same as that of Fig. . Interconnections among the nodes in the network5

                       reflect the hierarchy of EMPO levels. Child classes of higher levels are connected to their parent classes of lower levels and are interconnected to

                   each other. Co-enrichment network of host metadata (host scientific name). Classification of the hosts are curated manually and coloredd

                   accordingly. The co-enrichment network indicates that hosts of the same class appear to be more co-enriched when accounting for their

    association with the Earth s microbiomes’
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      way. Furthermore, geographical covariates, such as eleva-
         tion and latitude, were ranked among the classes of EMPO

       level-2 or level-3, suggesting their roles in characterizing
        environment types. It is also worth noting that technical

       indicators, such as extraction center, sequence length, and

        platform, were among classes of EMPO level-2 and there-
        fore needed to be considered as strong confounding fac-

          tors in the meta-analysis of the EMP samples (Fig. a, b).7

        In addition, was used to constru ct a co-e nrich-tmap

         ment network of the EMPO metada ta to reveal the ir in-
         terrelations. As shown in Fig. c, the EMPO classes were7

      interconnected in a network whose configu ration reflects
         their hierarchy levels, with nodes of lower level to have

        more conne ctions with other nodes in the network. A

      further analysis of the host-associated samples revealed
      finer interre lations between hosts and their microbiome

      stratification, whic h could complement the EMPO sys-

       tem with mor e detailed classifications (Fig. d, Add-7
         itional file : Figure S10). We also tried to identify10

       driver taxa of different environment types by including

         both metadata and taxa in a TDA network. The result
       showed that distin ct groups of microbial taxa were

       enriched with different EMP O level-1 classes (Fig. c,7

       Additional file : Figure S9). Taken together, applyin g9
        tmap to the large- scale EMP datase t enabled us to

      effectively extract the hidden multisc ale ecological pat-

      terns and interrelations of envir onment types associate d
        with the earth microbiome and to id entify their detailed

   stratification for finer classific ations.

  Discussion and conc lusions
       tmap is an integrative method for analyzin g population-

     scale microbiome variation, allowing both stratification
      of complex microbiome landscape and association of

       metadata of hosts or environmental types. This meth od

        is powered by the algorit hm [ ] for topolo gicalMapper 31
        data analysis, which has been show n effect ive in sum-

     marizing large-scale high-dimensional datasets and in

       capturing complex patterns. In contrast to other widely
     used linear regres sion-based methods, including ,envfit

       adonis tmap, and ANOSIM, is capable of identifying

       complex non linear patterns in both synth etic and real
      microbiome datasets , allowed by the employ ed subnet-

     work enrichment analysis . Furthermore, the subnetwork

       enrichment analysis enables to calculate the SAFEtmap

       scores for systematically mapping all host metadata onto
       the underlying microbiom e varia tion to extract their as-

       sociations and interrelations. Th e potentia l of intmap

    population-scale microbiome studies was extensively
       demonstrated in our re-analysis of thre e published data-

       sets [ ], i.e., nonlinear trends and subpopulation en-5–7
       richments of microbi al taxa identif ied in the FGFP

     dataset, microb iome stratif ications associate d with coun-

        tries and lifestyles revealed in the AGP datase t, and

     associations of microbiomes with earth environment
        types in different scales illustrated in the EMP dataset.

        These results indicated that is capable of bringingtmap

       more specific and comprehensive insights to the micro-
      biome datasets with the related population metadata.

         To achieve a bette r perfo rmance of on a giventmap

      microbiome dataset, we provide clustering and topo-
       logical covering parame ters tha t can be tuned, alon g

      with optimization functions for their choice (http://
     tmap.readthedocs.io ). As the algorithm employsMapper

     density-based clustering and discards unclustered sam-

        ples, would perform better with a larger datasettmap

        that includes more data points from a microbiome land-
       scape to construct a more faithful topological network

      representation. Another important aspect of the algo-
         rithm is the choice of the filter functions, which depends

         on the nature of the studied dataset and research ques-

       tions to be addr essed. In practice, dimension reduction
        methods are the mos t commonly used filters [ ]. For30

        microbiome data, one such meth od is PCoA , which has

       helped reve al many biological insig hts, such as micro-
       biome variations among huma n body sites [ ]. Major51

       components of microbio me variation can be captured by

          the first two or three PCs of PCoA in microbiome stud-
           ies [ ], but there may still be a large qua ntity of vari-5–7

         ation rema ined in other PCs. For instance, there is a

       relatively large proportion of variance uncaptured by the
         first two PCs (67.91% , 87.10%, and 80.71% for the FGFP,

       AGP, and EMP datasets), reflecting the dimensional na-

       ture of these microbiome variations (Additional file :11
          Figure S11). It is worth noting that has an advan-tmap

       tage of recov ering the dista nce information from the

       original high-dimen sional space that is not captured by
           the PCs used as filters, suc h as the first two PCs of

        PCoA (Additional file : Figure S12). As illustrated in12

        Additional file : Figure S13, the cluste ring step of13
        tmap uses the original distance to calculate and recover

       distinct clusters of samples in their original high-

      dimensional space, which otherwise might be superim-
           posed on each other due to the loss of variation in the

          projection space. As a result, is able to capture fartmap

         more variation than that in the projection space by the
        PCs used as filters ( vs PCoA, regressiontmap R 2  of 0.80

           vs 0.51 for the FGFP dataset using PC1 and PC2 of PCoA,

       see the “Methods” section and Additional file 14: Figure
         S14 for more details). The recovered variance is also evi-

       dent by comparing the projected distances between sam-

        ples within a cover to their network distances constructed
            by ( vs PCoA, CV of 1.90 vs 0.55 for the FGFPtmap tmap

        dataset, see Additional file : Figure S15 for other15

datasets).
          In principle, can use more than two PCs as fil-tmap

         ters, but increasing the number of filters (e.g., ) willn

         lead to an expo nential inc rease in the number of covers
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    to be generated (e.g., 10 n       covers resolution 10for a of on
          each filte r), which then will result in too few samp les to

          be clustered or a TDA network too sparse to have suffi-
       cient connectivity among nodes (see the sec-“Method s”

        tion for more details on network ). As shownsparsene ss

          in Additional file : Figure S14, using the first four PCs14
         as filters resulted in a TDA network with high sparse-

          ness (e.g., 82.88% for the FGFP dataset in PCoA). To en-

         sure that there are enough and dense samples to be
        binned within each cover for clustering analysis and to

       obtain a TDA network with sufficient connection be-

          tween nodes, we used only the first two PCs of PCoA
       (or two-dimensional pro jection in t-SNE or UMAP) as

  filters in .tmap

      Although regression improvement can be achieved by
        projection using more PCs (or components to be pro-

        jected), the performance of tmap in capturing the variation

       of the original high-dimensional space of microbiome s am-
          ples appears robust to the number of PCs used as filters

     (tmap vs projection space, regression R 2     of 0.64 ± 0.10 vs

     0.46 ± 0.14, Additiona l file 14 : Figu re S14) . Other wise, t he
  use of many PCs (such as four PCs) will lead tmap to gen-

        erate a TDA network with few connections among nodes

        and therefore will compromise its ability to recover suffi-
      cient original microbiome variation (Additional file 14:

 Figure S14).

           In the case tha t a set of target varia bles (e.g., a subset
       of metadata or microbiome features, rather than the

       overall microbiome varia tion) are of interest, we propose

        a superv ised strategy to help choose the most suitable
           PCs to be used as filters. This strategy is based on the

        proportion of total variance explained by each PC [ ],52

         multiplied by the of the target vari-enriched SAFE scores

           ables, to ran k and select a subset of PCs as filters for
       final TDA network construction (see the “Methods” sec-

         tion and Additional file : Figure S16 for details). Apply-16
          ing this strategy to the FGFP dataset showed that the first

         two PCs (PC1 and PC2) actually gave the largest aggre-

         gated scores when all the metadata were taken as target
      variables (42.39% of the cumulative aggregated score).

       Moreover, given different target variables of interest, dif-

         ferent PCs may be selected as the most informative filters
              (e.g., PC 8, 3 for age and PC 1, 2 for BSS in the FGFP

dataset).

         In addition to PCoA, which is widely used in micro-
      biome analysis [ ], other dimension reduction methods13 

        can also be used as filters, especially nonlinear and

        large-scale methods, such as t- SNE [ ] and UMAP [ ].29 27
       To examine the robustness of different dimension reduc-

        tion method s as filters in tmap to detect host-microbiome

        associations, we applied PCoA, t-SNE, and UMAP to the
        FGFP dataset and compared their results with that of

       envfit. All three methods shared a significant common

           subset of host covariates in their top 10 s (4 in top 10,’

     permutation test value = 1ep −4     , see the “Methods” section
        for details, Additional file : Figure S17). Furthermore, all17

      three methods consistently supported the observed differ-
           ences in the effect size of association for the four host co-

        variates as identified in the comparison between andtmap

        envfit (Additional file : Figure S17). In future research,17
          one may expect that it is possible to combine the results

        from different parameters and filters, to construct an inte-

        grative TDA network for multiscale mapping [53] and for
    large collections of microbiome datasets.

      Subnetwork enrichment analysis of the SAFE algo-

         rithm allows to transform the values of a targettmap

        variable into a vector of SAFE scores , corresponding to
        each node in a TDA network. Therefore, the ass ociation

       patterns of target variables can be compared quantita-
        tively by their vectors of SAFE scores, usin g ordination

        or co-enrichment analysis (Fig. ). For each target vari-1

     able, a network-level association (designated SAFE

        enriched score) can be obtained by filterin g and sum-
        ming its SAFE scores of individual nodes (see the

       “ ”Methods for details). Like the -squared in linearR 

         regression, the SAFE enriched score can be used as an
       effect size to compare betwee n different host covariates

       for their associatio ns with microbiome varia tion. It is
        worth noting, however, that the SAFE score is differ ent

       from the correla tion coeffi cient in linear regres sion in

          two aspects. First, it is able to detect subtle and comple x
      associations, both linear and nonlinear, as demonstrated

       in our analy sis of synthetic and real-world datasets.

         Second, SAFE scores can form a vect or of values, repre-
       senting all local subnetwork associations, which can be

       subjected to furthe r analysis of the interre lationships be-

      tween metada ta. In contrast, the correlatio n coefficient
         in linear regression is only a value of correlation, which

        cannot be used to analyze interrelations between the as-

        sociation patt erns of metadata, as we have done with
 SAFE scor es.

       Furthermore, SAFE scores allow us to use co-enrichment

      analysis to scrutinize whether interrelations between target
      variables r epresent confounding effects or biological associ-

       ations with microbiome variations. For instance, a signifi-

       cant co-enrichment be tween a host covariate (s uch as
   Gender) and a taxon (such as Roseburia) may represent the

     o u t c o m e o f h o s t - m i c r o b i o m e i n t e r a c t i o n s . I n s t e a d , a

      c o - e n r i c h m e n t b e t w e e n a m e d i c a t i o n ( s u c h a  s β- l a c t a m
        ant ibi oti c) an d a di sea se ( suc h as ch ron ic f ati g ue s yn-

        d r o m e ) i s l i k e l y d u e t  o a c o n f o u n d i n g e f f e c t . T h e r e f o r e ,

      a l t h o u g h S A F E s c o r e s a r e c  a l c u l a t e d i n d e p e n d e n t l y ( v i a
      i n d e p e n d e n t r a n d o m s h u f f l e ) f o r e a c h m e t a d a t a o r

    m i c r o b i o m e f e a t u r e s , c o - e n r i c h m e n t a  n a l y s i s w o u l d

    c a p t u r e b o t h b i o l o g i c a l l y m e a n i n g f u l i n t e r c o r r e l a t i o n s
      a n d c o n f o u n d i n g e f f e c t s . I n t e r p r e t a t i o n o f t h e s e i  n t e r r e -

        l a t i o n s s h o u l d b e b a s e  d o n o u r k n o w l e d g e o f h o s t -

      m i c r o b i o m e i n t e r a  c t i o n s a n d t h e b a c k g r o u n d o f s t u d i e s ,
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         a s w e h a v e d e m o n s t r a t e d i n t h e a n a l y s i s o f t h e F G F P ,
   A G P , a n  d E M P d a t a s e t s .

        In conclus ion, tmap is an integrative framework for ana-
      lyzing population-scale microbiome variations and their as-

       sociation with hosts or environments. Based on topologic al

         data analysis, it is able to capture comple x microbiome vari-
       ations from high-dimensional datasets and r ecover the lost

      variation in their low-dimensional projection or embedding.

     Moreover, TDA ne twork representation and subnetwork
        enrichment analysis endows tm ap with the ability to extract

    complex host-microbiome association patterns, espe cially

        nonlinear associations that are hard to detect with curre ntly
       available methods. In microbiome research, given our inad-

        equate knowledge of the dynamics and complexity of host-

    microbiome interactions, espe cially at population-scale,
     innovative data-driven methods for discovering c omplex

     p a t t e r n s o f h o s t - m i c r o b i o m e a s s o c i a t i o n a r e u r g e n t l y

        n e e d e d [ 5 4 ] . I n t h i s r e g a r d , t m  a p c o u l d p r o v i d e i n s i g h t s
     f r o m b o t h m i c r o b i o m e s t r a t i f i c a t i o n a n d a s s o c i a t i o n

     analysis to inform further hypothesis-driven microbiome

         studies. tmap is provided as a software freely available at
   https://github.com/GPZ- Bioinfo/tmap , along with detailed

    tutorials and online documents (https://tmap.readthedocs.io).

Methods
     Mapper algorithm for microbiome data analysis

         tmap Mappe ris based on the algorithm [ ] for topo-31
      logical data analysis (TDA) to transform high-dimensional

       microbiome profiles of individual samples into a network

       representation that captures both local and global topo-
        logical patterns from the profiles (Fig. a). This algorithm2

      begins with projection of high-dimensional data points

     (representing microbiome profiles) into a low-dimensional
      space using filter functions. Usually, dimension reduction

         methods are used as filters to generate coordinates of data

        points in a low-dimensional space [ ]. For instance, when30
         PCA is used for dimension reduction, either one or two

          principal component(s) can be used as filter. If PC1 is used

          as filter, the coordinates of the points along PC1 will be
           generated. If both PC1 and PC2 are used as filter, the co-

         ordinates of the points in a two-dimensional space will be

         generated. Other functions may also be used as filter, such
           as the eccentricity or density of a dataset, or even a subset

         of the original dimensions, as long as they can generate

       coordinates of data points in a low-dimensional space.
        After projection of the data points into a low-d imensional

         space, the covering step of Mapper partitions the space into

     a number of overlapping covers with equal size. The purpose
          of covering is to use covers of the low-dimensional space to

        capture its topological properties, i.e., a cover represents a

       local neighborhood of the projected data points. Therefore,
       a collection of covers represents all neig hborhood informa-

        tion of the projected data points. To connect neighborhoods

         that are close to each other, overlaps between covers are

          retained in the covering step of the algorithm. As a result,
       covers and their overlaps capture both local neighborhood

     of points and their global interconnections.
      Information of original distanc es between data points

       might be lost after dimension reduct ion or projection.

          For exampl e, two points that are far apart in the high-
       dimensional spa ce might be projected as close neighbors

       in the low-dimension al space. The step ofclustering

       Mapper is performed to retain the distance information
       of the high-dimensional spa ce. For each cover, po ints

       binned within it are cluste red into different clusters

         based on their distances in the original space rather than
      their projected distances. For instance, after applyin g

        PCoA to microbiome profiles, all the subsets of samp les

        that fall within each cover (a two-dime nsional cover if
          the first two coordin ates are used, such as PC1 and PC2)

       will be clustered independently. As a result, samples

        within a cover would be clustered into different clusters
        if they are quite different in their original microbiome

         profiles, although they might be close to each other in

      the proj ection spa ce of PC1 and PC2.
          The last step of is to generate a TDA network,Mapper

          in which a represents a group of samples that arenode

        clustered together and a occurs between two nodeslink

        if they share common samples in the ir clusters. The
      TDA network prov ides a compressive representation of

    high-dimensional microbio me profiles for exploring
      microbiome varia tions and for stratification and associ-

 ation analysis.

    SAFE algorithm and SAFE score

        Once a TDA network of microbiome profiles is con-

       structed, the values of metadata or microbiome features
          can be individually mapped to the network (Fig. 2b). For a

        given metadata, e.g., age, this mapping assigns a numerical

        attribute (called mapping score) t o each node, by calculating
its ave raged values among samples in the node (e.g., mean

        age). We assume that a target variable non-randomly dis-

        tributed among the TDA network indicates that its associ-
       ation with the underlying microbiome profiles is significant.

         Intuitively, if the nodes with high mapping scores are neigh-

         bors, interconnected to each other in the network, a pattern
        of subnetwork enrichment of these nodes can be observed.

         The significance level of the observed pattern can be calcu-

        lated by permuting the mapping scores along the whole
       network. A non-random enrichment pattern w ill have sig-

       nificantly higher scores for the subnetwork compared to

the randomly permuted scores.
        To impleme nt the abov e idea, adopts the spatialtmap

      analysis of functional enrich ment (SAFE) algorithm for

      network enrichment analysis [ ]. The algorit hm was36
       developed as a systematic meth od for annotating bio-

      logical network and examining the ir functional associ-

       ation. We modified the original algorit hm to calcu late
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       an enrichment score (designated SAFE score) for each
          node in a TDA network for a given target variable (meta-

        data or microbiome features), as described in the follow-
       ing steps (and as depicted in Fig. 2b):

         1) This algorithm starts with a TDA network and a
        target variable of metadata (e.g., ) or taxa. Forage

         each no de in the netw ork, SAFE defines a localu

       neighborhood of by identifying any other no desu

        that are closer than or equal to a maximum
     distance threshold (d) to u. Node distance is

      measured as the shortest path length between
      nodes By default, the maximum distance threshold.

           d 0.5this set to be equal to the percentile of all

     pairwise node dist ances in the network.
         2) For each node, SAFE sum s the values of neighbor

       nodes for a target variable as an observed

  neighborhood score (S observed  ). Meanwhile,
   permuted neighborhood scores ( S permuted  ) are

      obtained by randoml y shuffli ng the target variable

      among nodes in the network. The enrichmen t
      significance of the observed neighborhood score ( )P

        is measur ed as the probability that a random score

      will fall between the observed neighborhood score
(Sobserved         ) and the largest value of all scores (via

       ranking of both observed and permuted scores, as

      illustrated in Fig. b). Finally, the enrichment2
      significance ( ) is transformed into an enrichmentP

       score ( ), designa ted as SAFE score, which isO

         normalized in a range from 0 to 1 as below:

O u ¼

 − log 10  max P u ;

1

  n þ 1

  

 − log 10

1

  n þ 1

 

       where is the number of shuffles,n P u   is the signific ance
    of enrich ment of node u, a nd O u     is the SAFE score of

       node . Random shuffle is perfo rmed independently foru

  each target varia ble.

        3) A node is considered to be significantly enriched
          under a cutoff value of 0.05 (which can be tunedp

          in ). This cutoff va lue can be translated to atmap p

    cutoff SAFE score as below:

O   cuto f f ¼
−log 10 0 05:

−log10

1

  n þ 1

 

     Under the above cut off value (Ocutoff   ), SAFE enriched

          score is defined as the sum of SAFE scores of all

        significantly enriched nodes in a TDA network to meas-
        ure the overall enrichment significan ce in the whole net-

          work, which can be used to filter or rank metada ta or
taxa.

    Microbiome datasets and sample metadata

       The FGFP, AGP , and EMP microbiomes were collected
       from the data repositories pro vided in their public ations,

       along with samp le metadata (host phenotypes or envir-
       onment types). We used the available OTU/sOTU tables

          from the original stud ies to avoid bias of 16S rRNA se-

       quence data processing for result com parison [ ]. The55
        FGFP dataset compris es 1106 fecal samples and 69 iden-

       tified host covariates, which were classified into seven

     metadata categories (anthropometric , lifestyle, blood pa-
       rameters, health , bow el habit, dietary habit, and medica-

       tion). The AGP datase t com prises 9496 fecal samples

       and 451 self-reported metadata. The EMP dataset com-
       prises 20 00 samples, and their metada ta was downloaded

          from the EMP FTP site (see the Availability of data and“

      materials sectio n). The original OTU/sOTU tables were”

        rarified and normalized to obtain an equal number of
       reads for each sample before further analysis . Beta-

     diversity (Bray-Cu rtis or unweighted UniFrac) distance
     matrix was calcu lated with (scikit-bi o http://scikit-bio.

      org), followed by principal coordinat es analysis (PCoA).

        For the AGP and EMP dataset, in which representat ive
      sequences were available, we re-annotated their tax-

        onomy usin g the softwa re (using a cutoffusearch sintax

        bootstrap value of 0.8) [ , ]. We used genus-level56 57
         profiles for the analysis in this study. To perform net-

      work enrichment analysis with , categorical meta-tmap

       data was transformed into one -hot encoding with scikit-

          learn. Only metada ta tha t is collected for at least 90% of
       samples was retained for further analysis. Missing values

        were filled with medians for all the retained metadata.

      Parameters for topological data analysis and network

 enrichment analysis

        We used the same beta-diversity as the original studies
      (Bray-Curtis distance matrix for FGFP, unweighted Uni-

         Frac distance matrix for AGP and EMP) for result com-
        parison. used the first two principal coordinates oftmap

       PCoA as lenses (filters). Different topological and cluster-

        ing p aram eters were chose n for the d atas ets d ependi ng on
       their sample size and microbiome variation (FGFP: over -

         lap = 0 .75, resolution percentile eps threshold= 40, and =

       95th; AGP: overlap = 0 .95, resolution = 120 , and percentile

        eps threshold overlap= 90th; EMP: = 0 .75, resolution = 4 5,
         and percentile eps threshold = 95th). An online guide is

         available on how to choose proper parameters for a given
        dataset (see the Availability of data and materials sec-“ ”

         tion). After obtaining a TDA network for a dataset, meta-

        data or taxon abundance was individually mapped to the
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       network by enrichment analysis, using the SAFE algo-
        rithm. values were calculated for the observed SAFEp

         scores for each node in the TDA network by permutation
          test (iterations = 5000) and were FDR corrected for all the

          nodes. Nodes with a value of 0.05 (FDR corrected)p ≥

       were considered significantly enriched and were used to
        calculate the SAFE enriched score for metadata or taxa.

    Identifying and ranking microbiome-associated covariates

         For the FGFP dataset, ranking of the target varia bles of
    microbiome-associat ed host covariates was compared

       between , , ANOSIM, and . Ten thou-envfit adonis tmap

       sand permutat ions were use d in , , andenvfit adonis

        ANOSIM. Effec t sizes were used to rank the cov ariates

        by these methods ( -squared of and ,R envfit adonis R

        value of ANOSIM and SAFE enriched score of ).tmap

        Kendall s tau test was used to statistically compare the’

         rankings of and . Signi ficant value can beenvfit tmap p

         obtained for a consistent ranking of a subset of covari-
          ates, which are examined in a stepwis e test from top to

         bottom. Results of the first two stepwise test were absent
          because Kendall s tau test is valid only for a ranking with’

   more than two covariates.

     Synthetic microbiomes and simulation of associations

   between microbiome and metadata

     Synthetic microbiome datasets were generated with
     SparseDOSSA, using a Bayesian hier archical log-norma l

      distribution model to simulate species abunda nces [ ].37

        Model parameters are estimated by fitting to a reference
     microbiome dataset. Four microbiome datasets , includ-

       ing the default template dataset of , FGFPSparseDOSSA 

        dataset, AGP datase t, and EMP datase t, were used to
        train the model independently and the best one was

      chosen to furthe r simulate associations of metadata

       (Additional file : Figure S1). Associations between meta-1
       data and microbiome were simulated by mapping values

        of metadata onto the PCoA spaces of microbiome vari-

       ation (PC1 and PC2, using Bray-Curtis distance matrix)
       via various functions. Both linear and nonlinear associa-

      tions were simulated with the corresponding mapping

  functions as follows.
      Linear association s wer e generated by the followin g

function:

       f PC 1 2; PCð Þ ¼ a PC b PC 1 þ  2

        where the coefficient s and are randomly chosena b

           from the range of [ 1, 1] for each metada ta; PC1 and−

         PC2 are the coordinates of a microbiome sample in the

  two-dimensional PCoA space.
     Nonlinear association s of multiple local enrich ments

       were simulated by mapping Gaussian mixtures onto the

     PCoA spa ce, usin g the following function:

  f P C 1 2; PC ; nð Þ ¼
1

n

Xn

i¼1

 exp −
PC 1−μi1ð Þ 2

2σ2
þ

PC 2−μi2ð Þ 2

2σ2

" # !

            where (that is 2 or 3 in our simulation) is the numbern

        of Gaussians to be simulated in the mixture; (μi1  , μi2 ) i s

           the center of the th Gaussia n in the PCoA space, andi σ

         is the standard deviati on; PC1 and PC2 are the coordi-
       nates of a microbiome sample in the two-dime nsional

 PCoA spa ce.
       In order to use ANOSIM for microbiome association

       analysis, we also simulated categorical variables with linear

      or nonlinear pa tterns of associations. Binary discretization
      of continuous variables (with simulated linear associations

       as described above) was performed to obtain categorical

        variables. Based on the median of continuous variable, data
         points (samples in a PCoA space, PC1 and PC2) were

        assigned to two categorical groups (labeled as “True” if

       larger than the me dian, labe led as “False” ot herwise,
         Additional file 18: Figure S18). For the simulation of cat-

       egorical variables with nonlinear associations, we used an

        approach similar to the above simulation of multiple local
      enrichments. Instead of Gaussian mixtures, this approach

         picks multiple circular areas from the PCoA space and as-

         signs samples within the areas as “True” and other samples
         as “False.” First, a number of random samples were selected

           from the PCoA space to be used as centers. For ea ch cat-

        egorical variable, this number is randomly chosen in the
           range from 1 to 5. Second, for each area, the 50 samples

         that are closest to its center (including the center itself)

       were included, according to their Euclidean d istances on
          the PCoA space. If a selected sample is already included in

          other circular areas, it w ill be skipped and the next closest

         one is considered. Therefore, the ratio of sample sizes be-
       tween the two categorical groups (“True” or “False”) was

            kept in the range from 1:9 to 1:1, given that there were a

           total of 500 samples in our simulation. As in the case of
      continuous variables, a mixed simulation comprises both

          linear and nonlinear associations, in a ratio of 1:3 in their

   numbers of categorical variables.
       We used the default templa te microbiome dataset and

      model parame ters of to gener ate syntheticSparseDO SSA

      microbiomes consisted of 500 samples. Three scenarios
        were des igned to compa re the performance of andtmap

      other methods in detecting associate d metadata, includ-

       ing scen arios of linear associations only, nonlinear asso -
           ciations only, and the mix of both of them. In the first

      two scenarios, 50 associated meta data were gener ated

       according to the above mapping functions as positive
         cases to be detected; 50 random shuffles of the gener-

         ated metadata were used as negative cases. In the mixed

         scenarios, four kinds of association s (200 in total, 50 for
       each kind) were generated and mixed, including Gauss-

       ian mixture with three symmetric ce nters, G aussian mix-

      ture with thre e asymmet ric centers , Gaussian mix ture
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       with two centers, and linear distribution as described
         above. At the same time, random shuffles of the generated

        metadata were used as negative cases. Performance in de-
       tecting positive cases of associated metadata was com-

       pared between (measured by SAFE enriched score)tmap

         and other methods (measured by value) via receiver op-p

       erating characteristic curve (ROC) and area under the
      curve (AUC) score. Significant difference between AUC

       scores (100 repeats of simulations) was accessed by
         Mann-Whitney test. More details and the codes for theU

        simulation can be found in the online Jupyter notebook

       (see the Availability of data and materials section).“ ”

     Stratification, enterotype , and ordination analysis with

 SAFE scores

       Taxa-driven stratification of the TDA network of micro-
       biome variation was obtained by identifying the most

       significant enriched genus (with the highest SAFE score
          among all genera) for each node in the network. A cutoff

         value of SAFE score 0.35 (corresponding to a negative≥

        log-transformed value of 0.05 with 5000 iterations byp

         the SAFE algorithm) was used to filter out nodes with
       no significant genus. The stratif ication was visualized by

       coloring the TDA network accord ing to the enriched
       genera, which resulted in enterotype-like clusters in the

       microbiome landscape. Each cluster was highlighted by a

       color specific to its enriched genus. For comparison ,
      traditional enterotype an alysis was also performed using

      the partitioning around medoids (PAM) method (Jensen-

        Shannon divergence, and a preset number of three clus-
         ters) [ ]. Ordination of the SAFE scores of metadata and23

           taxa was done by PCA, to visualize how they relate to each

       other after mapping to the microbiome variation. Meta-
       data or taxa that share similar enrichment subnetworks

         will be close to each other within the PCA space.

  Co-enrichment network analysis

       SAFE scores of metadata or taxa contain information

       about their co-enrichment patterns on a TDA ne twork,
        which can be used to calculate their interre lations when

      accounting for their association with microbiome vari-

         ation. First, for each featu re (metadata or taxa), we sepa-
         rated all the nodes into two groups: one group of

        enriched nodes (as defined in the above SAFE algorithm)

       and another group of the remaining nodes. Therefore,
          for each pair of features, a contingency table can be ob-

        tained based on the combination of their node groups.

         Next, Fisher s exact test was used to examin e the inde-’

          pendence of node groups, and its value was used forp

     co-enrichment network construction. Only positive depend-

        ence of node groups was considered as a co-enrichment
       relationship. The resulted network was filtered using a

         threshold of 0.5th percentile of the p values (FDR corrected).

          The negative log-transforme d p value of th e test was used as

          edge weight for each pair of co-enriched features in a co-
 enrichment network.

        Selection and evaluation of filter functions in fortmap

  microbiome data analys is

         We used PCoA for the projection of the FGFP micro-
       biome profiles to a low-dimensional space and demon-

         strated a strategy on the selection and evaluat ion of PCs

           as filters in given a chosen set of target variables oftmap

         interest. First, each individual PC was used as the only
         filter in to constru ct a TDA network . After that,tmap

        SAFE enriched scores of the chosen target variables wer e
        calculated based on the network and were summed to

        quantify the overall associatio n of all the variables. The

         summed score for each PC was then multiplie d by the

          ratio of varianc e ex plained ag-of the PC to calcul ate an
         gregated score. At last, all the PCs were ranked according

       to their aggregated scores . Accu mulation curve of the
       ranked aggregate d scores was then used to determ ine

           h o w m a n y a n d w h i c h P C s t o b e s e l e c t e d a s f i l t e r s i n a

       f i n a l a n a l y s i s g i v e n a s p e  c i f i e d t h r e s h o l d v a l u e ( s e e
         A d d i t i o n a l f i l e 1 6 : F i g u r e S 1 6 f o r a w o r k f l o w o f t h e

      s t e p s ) . T h e s p e c i f i e  d t h r e s h o l d v a l u e d e t e  r m i n e s h o w

m uc h of th e c u m u l a t i v e a g g r eg a t e d s c o r e s t o b e k e p t
     b y t h  e s e l e c t e d P C s ( e . g .  , 7 0 % ) .

    Different dimension reduction methods, including

       PCoA, t-SNE, and UMAP , were compa red to evalu ate
        the robust ness of . In the comparison, two compo -tmap

         nents were selected from each method to be used as

           filters in . And all the meth ods used the same set oftmap

        parameters ( = 0.75, = 40, andoverlap resolution percent-

          ile eps threshold = 95th). To assess the significance of the

        observed number of common covariates in the top 10 s’

        of the rankings from each method, permutat ion test is
       used. In detail, three pseudo-rankings were obtained by

       permuting the 69 covariates three times independently for
        each iteration to calculate a random number of common

        covariates in the top 10 s from the pseudo-rankings. After’

       10,000 iteration, the observed value was compared with
          the random values to obtain its rank ( ) in a descendingr

       order, and value was calculated asp r/1 0000 .

     Recovering complex microbiome variations from high-

 dimensional space

        tmap is able to recover the original complex microbiome
       var iat ion s th a t a re l ost in a lo w-d im ens i on a l pr oje ctio n

          s p a c e , s u c h a s i n t h e P C o A s p a c e o f P C 1 a n d P C 2

       ( A d d i t i o n a l f i l e 1 3 : F i g u r e S 1 3 ) . L i n e a r r e g r e s s i o n a n a  -
       l y s i s w a s p e r f o r m e d t o q u a n t i f y t h e v a r i a t i o n c a p t u r e d

       b y t m a p t h a n t h a  t i n t h e l o w - d i m e n s i o n a l p r o j e c t i o n

       a f t e r u s i n g f i l t e r s o f d i m e n s i o n r e d u c t io n m e t h o d s . R-
 s q u a r e d (  R 2       ) w a s o b t a i n e d f r o m t h e l i n e a r r e g r e s s i o n

       b e t w e e n t h e o r i g i n a l d i s t a n c e in th e o rigi nal hi gh-

     d i m e n s i o n a l m i c r o b i o m e p r o f i l e s a n d t h e p r o j e c t e d
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        d i s t a n c e i n t h e p r o j e c t i o n s p a c e , o r t h e n etw ork d is-

        t a n c e in t m a p , r e s p e c t i v e l y . I n t h i s s t u d y , t h e o r i g i n a l

       d i s t a n c e i s t h e B r a y - C u r t i s d i s t a n c e b e t w e e n s a m p l e s i n
    t h e i r o r i g i n a l h  i g h - d i m e n s i o n a l m i c r o b i o m e p r o f i l e s .

       T h e p r o j e c t e d d i s t a n c e i s t h e E u c l i d e a n d i s t a n c e b e -

       t w e e n s a  m p l e s i n t  h e p r o j e c t i o n s p a c e . N e t w o r k d i s -
         t a n c e w a s m e a s u r e d a s t h e m i n i m a l n u m b e r o f e d g e s t o

        b e t r a  v e r s e d ( o r s h o r t e s t p a t h ) b e t w e e n e a c h p a i r o f

      n o d e s . B e c  a u s e n e t w o r k d i s t a n c e s w e r e c a l c u l a t e d b e -
         t w e e n n o d e s , i n w h i c h n o d e s a  r e g r o u p s o f s a m p l e s , t h e

     c o r r e s p o n d i n g o r i g i n a l d i s t a n c e s b e t w e e n s a m p l e s f r o m

       t w o n o d e s ( u v, ) a r e c a l c u l a t e d a s b e l o w :

d original ¼
1

nm

Xn

i

Xm

j

d uð i  ; v j Þ

           where and are the number of samples in noden m u

   and respectively;v u i         is the th samp le in node , andi u v j

        the th samp le in node ; and (j v d ui  , vj    ) is the Bray-Curtis
   distance between sample u i  and v j.

          In this study, we defined a metric of a TDAsparseness

       network to quantify the overall connectivity among its
  nodes as below:

  Sparseness 1¼ −

   2  u v;ð Þf j     u vand are connectedgj j

 n n þ 1ð Þ

           where n is the total number of nodes in the TDA network
          and are two nodes in the netw ork. Self-connectionsu and v

            (e.g., u v= ) are also counted. The greater the value of the
        sparseness of a TDA network indicates that the larger

         number of node pairs that are not connected and there-

       fore cannot be measured by the network distance.
    Comparison betw een low-dimensional projection and

       tmap using the above regression analysis was performe d

     f o r d i f f e r e n t d i m e n s i o n r e d u c t i o n m e t h o d s ( i n c l u d i n g
P C o A , P C A , t - S N E , U M A P ) a n d a l s o f o r d i f f e r e n t

        n u m b e r o f c o m p o n e n t s u s e d a s f i l t e r s ( f r o m t o p t w o

       t o f o u r c o m p o n e n t s ) . W e a l s o c o m p a r e d s a m p l e s t h a t
         a r e b i n n e d w i t h i n a s a m e c o v e r i n t h e p r o j e c t i o n s p a c e

       t o m e a s u r e t h e d i f f e r e n c e i n v a r i a n c e c a p t u r e d b y

      d i f f e r e n t m e t h o d s ; t h a t i s , d i s t a n c e s b e t w e e n s a m p l e s
        o r n o d e s f r o m d i f f e r e n t c o v e r s w e r e n o t i n c l u d e d i n

   t h e c o m p a r i s o n . T h e o b t a i n e d n e t w o r k d i s t a n c e s a n d

       p r o j e c t e d d i s t a n c e s ( f r o m w i t h i n e a c h c o v e r ) w e r e n o r -
          m a l i z e d i n t o t h e r a n g e o f [ 0 , 1 ] , b y d i v i d i n g t h e d i s -

       t a n c e t o t h e m a x i m u m d i s t a n c e f r o m t h e o v e r a l l

      n e t w o r k o r t h e o v e r a l l p r o j e c t i o n s p a c e r e s p e c t i v e l y .
        C o e f f i c i e n t o f v a r i a t i o n ( C V ) , t h e r a t i o o f t h e s t a n d a r d

         d e v i a t i o n t o t h e m e a n , w a s c a l c u l a t e d f o r b o t h t h e n e t -

       w o r k d i s t a n c e s a n d t h e p r o j e c t e d d i s t a n c e s t o c o m p a r e
        t h e v a r i a n c e c a p t u r e d b y e a c h o f t h e m e t h o d s ( t m a p

      v s d i m e n s i o n r e d u c t i o n ) w h e n c o n s t r a i n e d w i t h i n i n -

 d i v i d u a l c o v e r s .
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         Additional file 1: Figure S1. Comparison between simulated data and

        training data for different microbiome datasets via principal coordinate

          analysis (PCoA). Bray-Curtis distance matrix is used in the analysis. PCoA

           plots show the similarity between simulated data and training data of (a)

            FGFP, (b) EMP, (c) AGP and (d) the demo data of SparseDOSSA, respectively.

          Additional file 2: Figure S2. Performance of in detecting lineartmap

        and nonlinear patterns of simula ted microbiom e associations for different

        number of metadata. Receiver operating characteristic (ROC) curves are

          used to compare the performance betwee n (a) and , (b)tmap adonis

          tmap tmap envfitand ANOSIM, (c) and , in detecting microbiome-

        associated metadata. Categorical metadata are used for the comparis on

         between and ANOSIM. Continuo us metadata are used in othertmap

         cases. Three scenarios of association with different number of metadata

         are examined (including linear-only, nonlinear-only and a mix of both).

         The shaded areas indicate 95% confidence intervals (100 repeats). (d)

           One-sided (greater) t-test is used to test the significance of improved area

           under the curve (AUC) scores of over the other three methodstmap

    ( , and ANOSIM respectively).envfit adonis

           Additional file 3: Figure S3. Illustrations of in the detection oftmap

         associations of simulated metadata Color legend (from blue to red).

         indicates values of metadata (from small to large). Network color

     represents SAFE scores on each node.

          Additional file 4: Figure S4. Compari son of rankings of host covariates

       associated with the FGFP microbiomes using en vfit, adonis, ANOSI M and tmap.

            Additional file 5: Figur e S5. Example of large variances of a host covariate

              in a local subnetwork that lead to low SAFE scores. Left, PCoA plot of samples

           colored accord ing to the host covariate of time since previous relief. Right,

           TDA networ k colored according to the S AFE scores of time since previous

             relief. The zoomed area shows a local subnetwork with a large variance of the

            covariate, which results in low SAFE scores. Node colors are based on their

         SAFE scores, from red (large values) to blue (small values).

         Additional file 6: Figure S6. Illustrations of TDA network enrichment

          analysis of metadata compared with PCoA. (a,c,e) PCoA plots of microbiome

          samples of the FGFP cohort, colored according to the covariates of

         Gender:F, Time since previous relief and HDL cholesterol, respectively. (b,d,f)

          TDA network enrichment scores (SAFE scores) of the covariates of Gender:F,

         Time since previous relief and HDL cholesterol, respectively. Colors are

           based on their values, from red (large values) to blue (small values).

         Additional file 7: Figure S7. In-depth stratification of the FGFP

       microbiomes. (a) Stratification based on traditional enterotype analysis.
          Nodes are colored based on enterotype driver taxa. (b) Stratification based

            on the most enriched taxon, which is identified from all taxa by comparing
            their SAFE scores on each node. Node colors are based on the identified

          taxon. Only taxa enriched in more than 100 nodes are highlighted.
          Remaining unstratified nodes (with no enriched taxa) are colored in gray.

             Additional file 8: Figure S8. PCA of the SAFE scores of taxa and host

          covariates shows the overall pattern of their associations with the AGP

          microbiomes. The top 10 covariates and taxa identified by SAFE enriched

          scores are highlighted (markers with edge color of gray) and annotated

         with their names. Host covariates are colored based on metadata

             category, and taxa are in red. Marker size is scaled according to the SAFE

     enriched score of metadata or taxa.

         Additional file 9: Figure S9. Comparison of TDA network enrichment

        patterns between classes of EMPO level-1 and ENVO_biome level-1.

         Enriched subnetworks of the EMP microbiomes are identified and colored

           based on the classes of EMPO level-1 (a) and classes of ENVO_b iome

          level-1 (b), respectively. Only enriched nodes are colored and showed in

        the network. The remaining nodes are colored in gray.

         Additional file 10: Figure S10. TDA network enrichment patterns of

         host-associated microbiomes. Nodes in the TDA network of the EMP

          microbiomes are colored based on their enriched host. Classification of the

           hosts are curated manually. Onl y enriched nodes are colore d and showed in

        the network. The remaining nodes are colored in gray.
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         Additional file 11: Figure S11. Proportion of total variance explained

           by each PC in PCoA of the FGFP, AGP and EMP datasets.

         Additional file 12: Figure S12. Regression between original distance and

          projected distance or network distance for the FGFP, AGP and EMP
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