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' Abstract

Untangling the complex variations of microbiome associated with large-scale host phenotypes or environment
types challenges the currently available analytic methods. Here, we present tmap, an integrative framework based
on topological data analysis for population-scale microbiome stratification and association studies. The performance
of tmap in detecting nonlinear patterns is validated by different scenarios of simulation, which clearly demonstrate
its superiority over the most commonly used methods. Application of tmap to several population-scale
microbiomes extensively demonstrates its strength in revealing microbiome-associated host or environmental
features and in understanding the systematic interrelations among their association patterns. tmap is available at

https://github.com/GPZ-Bioinfo/tmap.
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Background

Microbiome-wide association studies (MWAS) capture
the variation and dynamics of microbiome associated with
host phenotypes or environment types [1-5]. In order to
identify underappreciated but significant microbiome-
associated host factors, comprehensive sample metadata
of large-scale populations are usually collected [6—10]. For
instance, the gut microbiomes of a healthy population
were shown to be associated with hosts’ stool consistency
and medication, which may confound the identification of
disease-related markers [7]; and links among microbiome,
metabolome, and diet of individual hosts were character-
ized with a crowdsourced cohort of over 10,000 citizen
scientists [6]. However, these analyses failed to account
for different association patterns among subpopulations
[11] without methods for mapping a myriad of host
phenotypes to complex microbiome profiles.
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Identifying association patterns in a high-dimensional
space of both population-scale host phenotypes and
microbiome features poses challenges to existing analytic
methods for microbiome analysis [12, 13]. Most of the
currently available methods, such as metagenomeSeq
(14], DESeq?2 [15], Metastats [16], LEfSe [17], and MaA-
sLin [18], are mainly based on either statistical test for
differential microbiome abundance or linear regression
to identify associated covariates. Differential abundance
testing examines each microbiome feature individually
without considering correlations among taxa [14-19].
Alternatively, dimension reduction methods can be used
to project high-dimensional microbiome profiles to low-
dimensional spaces for pattern discovery and association,
such as principal coordinates analysis (PCoA) and princi-
pal component analysis (PCA) [13]. The resulted ordin-
ation axes can be utilized by linear regression to identify
microbiome-associated host covariates using the envfit
method in the vegan package [20]. There are also methods
using distance matrix of microbiome beta-diversity for as-
sociation analysis by fitting linear models to the distances
or testing dissimilarities between groups, such as adonis
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and ANOSIM (21, 22]. These linear methods may not be
able to capture nonlinear patterns of host-microbiome as-
sociation in a high-dimensional microbiome dataset.

Stratification of population-scale human microbiome has
been used to reveal subgroups of hosts with distinct micro-
biome configurations such as the identification of entero-
types [23]. Current methods for microbiome stratification
or clustering analysis include partition-based clustering (for
instance, k-means and k-medoids clustering) and Dirichlet
multinomial mixture (DMM) models [11, 23-25]. How-
ever, these methods have limitations when applied to high-
dimensional datasets. For example, k-means clustering may
fail to separate nonlinear local manifold structures imbed-
ded in a high-dimensional space [26], while the distribution
assumption of DMM may not be fully met in real micro-
biome datasets [11]. Moreover, these two methods are
unsupervised and divide microbiome samples into groups
regardless of their associated metadata. Thus, to perform
sophisticated stratification of population-scale microbiome
samples, it is necessary to develop methods that can iden-
tify nonlinear local structures and can be supervised by host
phenotypes.

Here, we present tmap, a method based on topological
data analysis and network representation for stratification
and association study of high-dimensional microbiome
data. This method is motivated by using advanced large-
scale data mining techniques to capture subtle and non-
linear patterns of high-dimensional datasets [27-30]. We
adopted the Mapper algorithm for topological data analysis
(TDA) [31], which has demonstrated its powerful abilities
in analyzing complex biological and medical data [32-35].
This algorithm allows us to construct an informative and
compact network representation of high-dimensional data-
set. We developed tmap to extend the algorithm for micro-
biome study and utilize the network representation as an
integrated framework for both association and stratification
of population-scale microbiome data. This framework en-
ables us to identify association of taxa or metadata within
the entire network and to extract enrichment subnetworks
of different association patterns. We validated the perform-
ance of tmap in detecting nonlinear host-microbiome asso-
ciation in different scenarios using synthetic microbiome
data. Our method successfully identified most of the simu-
lated nonlinear associations, which are hard to be detected
with other methods (average ROC AUC of 0.95, 0.55, 0.89,
and 0.63 for tmap, envfit, adonis, and ANOSIM respect-
ively). Applying tmap to two population-scale human gut
microbiome datasets of the Flemish Gut Flora Project
(FGFP) [7] and American Gut Project (AGP) [6] extensively
demonstrated its strengths in identifying nonlinear pat-
terns and subpopulation enrichments of microbial taxa
and in revealing microbiome stratifications associated
with lifestyles. We also applied ¢map to an even larger
scale dataset of the Earth Microbiome Project (EMP)
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[5] to illustrate the multiscale interrelations among en-
vironment types.

Results

tmap was developed as an integrative framework for
analyzing population-scale microbiome data to identify
association of host phenotypes with high-dimensional
microbiome profiles and microbiome stratification
enriched with host phenotypes or environment types.
Underlying tmap is a bioinformatic pipeline of topo-
logical data analysis and network enrichment analysis
for the discovery and visualization of the patterns of
microbiome variation. The workflow of tmap consists
of three major steps (Fig. 1). The first step uses the
Mapper algorithm [31] (Fig. 2a, see the “Methods”
section for details) to transform high-dimensional
microbiome profiles into a TDA network to represent
the microbiome variation. A node in the network rep-
resents a group of samples with highly similar micro-
biome profiles, and a link between two nodes indicates that
common samples are shared between the two groups of
samples corresponding to the nodes. Therefore, a TDA net-
work captures both local (as local connections between
nodes) and global (as global connections between nodes)
patterns of microbiome variation. The second step uses a
modified version of the spatial analysis of functional enrich-
ment (SAFE) algorithm [36] (Fig. 2b, see the “Methods” sec-
tion for details) to map the values of a target variable
(metadata or microbiome features) into the TDA network
to generate its subnetwork enrichment scores (designated
SAFE scores, one score on each node individually). For a
given target variable, such as age, a SAFE score on a
node quantifies, statistically, the enrichment level of
its values in the samples belonging to the subnetwork
centered around the node (determined by a threshold
of network neighborhood, see the “Methods” section
for details). Together, all the SAFE scores of a target
variable form a vector of values, measuring all local
enrichment levels on all the nodes in a TDA network.
In the last step of tmap, vectors of SAFE scores for
each metadata or microbiome features can be com-
pared to each other to characterize their interrelations,
reflecting the similarities of their enrichment patterns
in the network. This step allows us to rank driver taxa
of microbiome variation, to perform ordination analysis of
SAFE scores, and to calculate co-enrichment relations be-
tween metadata and microbiome features. With tmap, one
can explore how microbiome and the host are associated at
different scales, and analyze how different host factors are
related to each other attributable to the corresponding
microbiome variations. The utility of tmap framework in
analyzing the datasets of synthetic microbiomes, human
gut microbiomes, and the earth microbiome will be
demonstrated and discussed as follows.



Liao et al. Genome Biology (2019) 20:293

Page 3 of 19

High dimensional
microbiome profiles

Metadata

o SAFE
Sy algerithm
e {Fig. 7b)

g

Samples

- Microbiome features
Tazen 1
o Tangn 2
Taxon 3

Samples Taxon 3

TOA netwark

L @

or microbiome features based on their SAFE scores

Netwerk anrichment analysis L

Fig. 1 Overview of tmap workflow for integrative microbiome data analysis. The workflow transforms high-dimensional microbiome profiles into
a compressive topological network representation for microbiome stratification and association analysis. The first step uses the Mapper algorithm
(Fig. 2a, see the “Methods" section for details) to construct a TDA network from high-dimensional microbiome profiles. The second step uses the
SAFE algorithm (Fig. 2b, see the “Methods" section for details) to map the values of metadata or microbiome features to the network to generate
their vectors of SAFE scores. The last step performs ranking, ordination, and co-enrichment analysis to characterize interrelations among metadata

3
i3
— Bw
&2
i
= m o4 o
T SAFE scome H 5 B £ §‘
m 28 de 7
L Ranking
zgm.
Taxcn 3
= .. gron?
gl e Ga\;up.
Ganger
2 PC1
Ordination
Vectors of SAFE scores
»

Gendar

Taxon 1

Teaman 2
-

Co-enrichment

Analysis of microbiome
features & metadata

Detecting nonlinear enrichment and association patterns
in synthetic microbiomes

We first applied tmap on synthetic datasets to evaluate
its ability to detect microbiome enrichment and associ-
ation patterns. In order to simulate microbiomes follow-
ing the distribution of species diversity and abundance
in real datasets, we used SparseDOSSA [37] to generate
synthetic microbiome data, which is a Bayesian hierarch-
ical model and estimates species abundance parameters
based on training microbiomes [37, 38]. The synthetic
datasets closely resembled their training microbiome
data as shown in PCoA (Bray-Curtis dissimilarity, Add-
itional file 1: Figure S1). Based on these synthetic
datasets, we simulated host factors associated with the
microbiomes in different scenarios, including linear or
nonlinear associations, or the mix of both of them (see
the “Methods” section). After that, the performance of
tmap in identifying the simulated associations was com-
pared with the most commonly used methods (including
envfit, adonis, and ANOSIM) to validate the advantage
of tmap in nonlinear settings.

In the case of detecting linear associations, tmap and
the other methods in comparison exhibited similar per-
formance (average ROC AUC of 1.00 for all of them,
Fig. 3d, e). We further evaluate the performance of tmap
in detecting nonlinear associations via simulating differ-
ent nonlinear enrichment patterns in a microbiome
landscape. Both symmetric and asymmetric multiple
(two or three) local enrichments were included in our
simulation for the detection of nonlinear associations
(Fig. 3a—c). The organization of the centers of the local
enrichments in each simulated association determines
the strength of either linear or nonlinear effect of the

association. For instance, an association pattern of sym-
metric multiple local enrichments can be detected by
nonlinear methods, while the projection of this pattern
to any linear direction will result in an averaged linear
effect of almost zero (Fig. 3a, c). In contrast, asymmetric
multiple local enrichments can be detected by nonlinear
methods and also by linear methods because of the aver-
aged linear effect greater than zero (Fig. 3b). Different
performances in detecting the simulated nonlinear asso-
ciations were observed for the four methods (average
ROC AUC of 0.95, 0.55, 0.89, and 0.63 for tmap, envfit,
adonis, and ANOSIM respectively, Fig. 3e, Add-
itional file 20: Table S1, Additional file 2: Figure S2). Al-
though adonis achieved an average ROC AUC of 0.89,
which is the best among the three methods in compari-
son, tmap still significantly improved upon adonis (aver-
age AUC of 0.95, p value =8.11e %, Additional file 2:
Figure S2). The weaker performance of adonis and the
other two methods is most likely due to the linear re-
gression technique used by these methods [20-22],
which can only identify linear association between host
factors and microbiome variation. In contrast, tmap is
based on network enrichment analysis, which can
analyze both linear and nonlinear associations. At last,
we evaluated all the methods in a more realistic scenario
that consists of both linear and nonlinear associations
(see the “Methods” section). Like the above nonlinear-
only scenario, tmap still had a significantly better out-
come in this mixed scenario (average ROC AUC of 0.98,
0.82, 0.93, and 0.73 for tmap, envfit, adonis, and ANO-
SIM respectively, Fig. 3e, Additional file 20: Table S1,
Additional file 2: Figure S2). Similar improvement by
tmap over the other three methods was observed when



Liao et al. Genome Biology (2019) 20:293 Page 4 of 19
~ ~
R R
[ ¢ ®
e B0 oS
* .: #o Node
. o
4 Ve 3 Fd
(X
.::: .' 3 Link
% ®e e
.y o,
I o® LY
Tl 5
[ ]
L]
Paint cloud: Filter: Covering. Clustering: TDA Network:

Collection of high
dimensional microbiome
profiles (data points)

(b)

Function for projecting
the points to a low
dimensicnal space (R)

Binning the points in the
projected space (R) using
overlapping covers

Observed scone

Mode atiribute
Max Min 7T

Node attribute e _z"NeiworK
0.9 average age (0 ""‘ neighbors

far @ach nade

9]

—_—
Parmute n times
| (OO0 {whole network)

TDA network
representation of
microbiome data

Network mapping with node
attributes for selected variable (e.g.
average age of samples in nodes)

-
-,
Permute n times

(whole network)

* Scora{S) : sum of
neidghbaors

Subnetwork for each node to aggregate node values

(both observed and permuted) of its neighbors
Calculation of rank statistic for enrichment scores
Fig. 2 Schematic illustration of the Mapper and SAFE algorithms used by tmap. a The Mapper algorithm comprises five steps. First, data points of
high-dimensional microbiome profiles (such as OTU table) are taken as input. Then, projection of the high-dimensional data points to a low-
dimensional space (R as shown in the figure) is performed by using a filter function (such as PC1 of PCoA). The covering step partitions the low-
dimensional space into overlapping covers to bin a subset of data points within them. After that, clustering is conducted to cluster data points
within each cover into different clusters based on their distances in the original high-dimensional space. The last step constructs a TDA network
from the result of clustering analysis, in which node represents a cluster of data points and link between nodes indicates common data points
between clusters. b The SAFE algorithm comprises three steps. Starting with a TDA network, it maps the values of metadata or microbiome
features into the network as node attributes (e.g., average age). Second, subnetwork enrichment analysis is performed for each node to analyze
its significance of the observed enrichment pattern via network permutations. This analysis is performed for each target variable (metadata or
microbiome features) respectively. The last step is the calculation of SAFE score (O) via log transformation and normalization of the significance
level of the observed enrichment. More details of these two algorithms are provided in the “Methods” section

Representation of the point cloud
node: cluster of points in a component
link: common points exist between components

Clustering the points within each
bin into distinct components
in the original space

Permuted score Rank statistic

= ohsarved score SAFE score
B gecrnuded scam
£ :
— 2 High Low
Rank @
[ n
—_—
p=l 3
o __..-..ﬁ.. .Imaxl-".‘m?]
-lesem T

BN sbserved score
R permuted vakie

SAFE scores () for
each node in the network

we varied the number of simulated metadata associated
with the microbiome (Additional file 2: Figure S2). Over-
all, tmap can detect both linear and nonlinear micro-
biome associations with comparable performance, based
on network enrichment analysis rather than linear re-
gression. As validated in the synthetic microbiomes, our
method is capable of detecting various kinds of associ-
ation microbiome patterns. Moreover, in addition to the
patterns of multiple local enrichment, tmap is also
capable of detecting other types of nonlinear patterns,
such as circular or spiral enrichments (Additional file 19:
Text S1, Additional file 3: Figure S3).

Improving identification of human gut microbiome
stratifications associated with host covariates

Host factors may be associated with gut microbiome in
different ways, local or global, linear or nonlinear. In the
study of the Flemish Gut Flora Project (FGFP), it was
shown that only about 7.63% of the microbiome vari-
ation can be explained by the identified host covariates
using linear association models [7]. tmap was applied to
analyze the FGFP cohort data aiming at improving the
identification and interpretation of such population-scale
microbiome-host associations, especially in discerning
nonlinear and local patterns.
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Overall, host covariates identified by tmap showed a
consistent overlap with that identified by envfit, particu-
larly for the covariates ranked in the top 19 (Kendall’s
tau, cutoff p value = 0.05, R? = 0.50, Fig. 4a). Like that in
the original study, Bristol stool scale (BSS) score is the
top associated covariate identified by tmap. However,
there were differences in the ranking of several host
covariates, including time since previous relief, mean
corpuscular hemoglobin (MCH), and shift work (Fig. 4a).
We speculate that the difference might be due to nonlin-
ear association patterns that are captured by tmap but
not by envfit. The observed differences were also sup-
ported by adonis and ANOSIM, except for time since
previous relief, which showed a weak and non-
significant association with the microbiomes in ANO-
SIM (R value = 0, p value = 0.10, Additional file 4: Figure
S4, Additional file 21: Table S2). We also noticed that
ANOSIM was unable to detect most of the host covari-
ates (only six among the total 69 covariates, cutoff p
value = 0.05, FDR corrected [39]) that are found to be
significantly associated with the microbiomes by all the
other methods (67 of total 69 covariates, cutoff p value =
0.05, FDR corrected, Additional file 21: Table S2). As
shown in the TDA network, we found that the enrichment

scores of time since previous relief are lower compared to
other highly enriched covariates (Fig. 4e). These low
scores can be explained by the large variance of time since
previous relief observed among samples in the local sub-
networks (Additional file 5: Figure S5). On the other hand,
enrichment scores of MCH are comparable to that of BSS,
consistent with their ranking by tmap although the rank-
ing of MCH by envfit is much lower (Fig. 4b, c).
Associations identified by tmap can be further strati-
fied into subgroups in the microbiome landscape to
characterize subpopulation-specific microbiome features.
For instance, pet past 3 months appeared to be enriched
within two subgroups (Fig. 4d), characterized by differ-
ent enriched genera. Salmonalla and Yersinia were
found to be enriched in the first group, whereas Anaero-
fustis and Acetanaerobacterium were enriched in the
second group (Additional file 22: Table S3). These ob-
servations are supported by previous studies, in which
Salmonalla and Yersinia were often isolated from
healthy cats and dogs [40]. Anaerofustis and Acetanaero-
bacterium were also found in healthy pets and human
gut, but their influence is yet to be understood [41, 42].
Taken together, tmap allows the identification of host
covariates with multiple enrichment subgroups and their
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related microbiome features, which may help to explain
microbiome variability among subpopulations and identify
specific biomarkers for disease diagnosis and treatment.

Systematic characterization of interrelations between

host covariates and microbiome taxa based on more
efficient stratification and association analyses

Systematic characterization of interrelations among host
factors correlated to the gut microbiota is valuable in
understanding host-microbiome interaction. By trans-
forming the values of host factors into SAFE scores, we
were able to quantify the relations between host factors
and taxa. Principal component analysis showed that the
overall enrichment patterns (represented by SAFE
scores) are explained mainly by the top genera as identi-
fied by SAFE enriched scores, including Faecalibacter-
ium, unclassified Ruminococcus, and Bacteroides (Fig. 5a,
Additional file 23: Table S4). Therefore, mapping the
taxa abundance to the TDA network (by SAFE scores of
taxa) allows us to identify driver species that contribute
to microbiome variation and to understand how they are
related to each other by PCA. This analysis also

confirmed the important host covariates identified in the
original study, such as gender, hemoglobin, time since pre-
vious relief, and HDL cholesterol (Fig. 5a, Additional file 6:
Figure S6). We further analyzed their interrelations via co-
enrichment network analysis of their SAFE scores (see the
“Methods” section). The result showed that male was co-
enriched with Roseburia, Blautia, Faecalibacterium, and
hemoglobin, whereas female was co-enriched with unclassi-
fied Bifidobacteriaceae, unclassified Bacillales, Alistipes, and
HDL cholesterol (Fig. 5b, c). These results are consistent
with the well-documented facts that serum hemoglobin
concentration in healthy male is often higher than female,
whereas healthy female tends to have higher HDL choles-
terol [43, 44]. By including both taxa and the related host
factors in co-enrichment network analysis, a systematic
view can be obtained to illustrate the association of blood
parameters and gender with the gut microbiome, which
would be valuable for understanding their possible inter-
action or confounding effect.

Disease and medication have been found to contribute
significantly to gut microbiota variation [45, 46]. With
tmap, we also explored how disease, medication, and
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microbiome would relate to each other in the FGFP
cohort. The original study only found that p-lactam anti-
biotic caused significant increase in the abundance of spe-
cific genera. Our analysis identified seven out of the 13
drugs significantly co-enriched with three diseases, along
with different associated microbiomes (Fig. 5d, e). For
instance, both osmotic laxatives and B-lactam antibiotic
were co-enriched with chronic fatigue syndrome, but with
distinct subnetworks of the microbiome (Fig. 5d, e),
highlighting the possibility of drug-specific microbiome
response. We also found that commonly used drugs for
ulcerative colitis (UC), such as the anti-inflammatory drug,
immune system suppressors, and [-lactam antibiotics
were co-enriched with UC, and are associated with differ-
ent microbiomes. These results demonstrated that tmap
may improve systematic and integrative analysis of micro-
biome and host phenotypes based on more efficient strati-
fication and association methods.

In-depth stratification of human gut microbiome
associated with country and lifestyle

Human gut microbiome from different countries was
shown to form clusters of distinct community composi-
tions, which were proposed as enterotypes [23]. As a
means of stratification of human gut microbiome, clus-
tering approach has been used for enterotype analysis to
identify microbiome configurations with distinct re-
sponses to drugs or diets [11, 23, 47]. Alternatively,
tmap provides another stratification approach based on
enrichment patterns of taxa abundance. We applied both
approaches to the microbiome data from the American
Gut Project (AGP), which comprises microbiome sam-
ples from over 10,000 citizen scientists [6]. The results
showed that both approaches were able to reveal a global
pattern of stratifications in the microbiome landscape,
driven by different taxa (Fig. 6a, b). In addition, tmap
also detected local in-depth stratifications of samples and
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Fig. 6 In-depth analysis of enterotype-like stratification of the AGP microbiomes and association with lifestyles. a Stratification of the AGP
microbiomes based on enriched taxa. For each node in the TDA network, the most enriched taxon among all taxa is identified according to SAFE
enriched score. Each node is colored according to its most enriched taxon. Only taxa enriched in more than 100 nodes are highlighted.
Remaining unstratified nodes (with no enriched taxa) are colored in gray. b Stratification based on traditional enterotype analysis. Nodes are
colored according to enterotype driver taxa. ¢ Stratification based on countries (USA or UK). Not enriched (or unstratified) nodes are colored in
gray. The number in the color legend indicates the number of nodes in the corresponding stratification. d-f Co-enrichment networks of lifestyle
factors and taxa. Co-enrichments with countries (USA or UK) are highlighted and extracted. The extracted co-enrichment subnetworks reveal that
different lifestyle factors are interrelated to the two countries when accounting for the AGP microbiomes. Node colors are based on metadata
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their driver taxa (Fig. 6a). For instance, the Firmicutes
enterotype (ET F) was subdivided into several local strati-
fications enriched with different taxa of Firmicutes, in-
cluding Roseburia, Clostridium cluster IV, unclassified
Lachnospiraceae, Coprococcus, Ruminococcus, and unclas-
sified Ruminococcaceae (Additional file 24: Table S5). In
contrast to enterotype stratification requiring the number
of clusters to be set before analysis [23], tmap automatic-
ally identifies stratifications of samples based on taxa
SAFE scores and the TDA network of microbiome. Our
approach to stratifying microbiome variations according
to the enrichment patterns of taxa can help to alleviate
the problem of inferring discretized enterotypes from the
continuous changes of microbiome taxa [48]. Further
examination of these ET F local stratifications revealed
their associations with host covariates. Existence of ET
F local stratifications was also observed in the FGFP
microbiomes (Additional file 7: Figure S7). This implies
that augmenting known enterotypes with these local
stratification patterns will further dissect population-
scale microbiome variations for the identification of
stratification-specific microbiome markers and their
links with host phenotypes.

Stratification of a population-scale microbiome could
be attributed to interactions between host phenotypes
and the gut microbiota [11]. We performed ordination
analysis of the SAFE scores to reveal the interrelations
between the host covariates and taxa accounting for the
variation of the AGP microbiomes (Additional file 8:
Figure S8, see the “Methods” section). Two of the most
prominent host covariates are countries (USA or UK),
which were co-enriched with different microbial taxa
(Fig. 6¢). For instance, USA samples were co-enriched
with Bacteroides, whereas UK samples were co-enriched
with unclassified Ruminococcaceae. These co-enriched
taxa have also been identified in the above enterotype
and stratification analysis, indicating that the stratifica-
tion is most likely associated with countries. As reported
in previous studies, Bacteroides is an enterotype-driven
genus and has been associated with a carnivorous dietary
habit [23, 47]. With the available metadata on host
lifestyles and dietary habits, we also performed co-
enrichment network analysis based on their SAFE
scores (see the “Methods” section). The resulted net-
works showed that most of the host factors and taxa
were co-enriched with two hubs, corresponding to the
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two countries (Fig. 6d—f). The co-enrichments reflect differ-
ent lifestyles associated with the two countries. For instance,
UK samples were co-enriched with homecooked meals fre-
quency (daily), milk cheese frequency (daily), whole grain
frequency (daily), and vegetable frequency (daily). On the
other hand, USA samples were co-enriched with antibiotic
history (6 months), multivitamin, and unspecified alcohol
types. Together, the co-enrichment networks indicate that
the stratification of the AGP microbiomes can be further
linked to lifestyles associated with different countries. This
analysis demonstrated the strength of trmap in providing an
integrative framework both for stratifying microbiomes and
for illustrating the interrelations among host factors contrib-
uting to the stratification.

lllustrating the multiscale pattern of the earth
microbiome and environment types

In addition to the human gut microbiome datasets ana-
lyzed above, we also applied tmap to the large-scale
microbiome samples from the Earth Microbiome Project
(EMP) to extract their ecological patterns [5]. The original
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study elucidated a multiscale pattern of microbiome diver-
sity of different environment types. In addition, via com-
bination of well-established microbial ecology knowledge
[49, 50] and the observed microbial diversity of the EMP
samples, the EMP Ontology (EMPO) was proposed for
the classification of environmental microbiome samples
[5]. Our re-analysis found that the SAFE enriched scores
of metadata were consistent with their EMPO levels; that
is, larger scores (reflecting bigger enrichment subnet-
works) correspond to lower levels, and vice versa (Fig. 7a,
b). As expected, classes of EMPO level-1 were ranked at
the top, followed by classes of EMPO level-2, and then by
EMPO level-3 (Fig. 7a). We also found that some of the
Environment Ontology (ENVO) descriptors had SAFE
enriched scores comparable to that of EMPO classes
(Fig. 7b). For instance, the ENVO level-1 descriptors of
terrestrial and aquatic biome were ranked among the top,
close to EMPO level-1 classes. But these ENVO descrip-
tors were associated with different subnetworks to that of
EMPO (Additional file 9: Figure S9), indicating that they
can classify environmental microbiomes in a different
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Fig. 7 Systematic characterization of the multiscale pattern of environment types associated with the Earth's microbiomes. a Ranking of EMPO,
ENVO, and other metadata based on SAFE enriched score. Metadata is colored based on their categories. The relative order of EMPO classes
among the ranking is highlighted by surrounded rectangles in gray. b PCA of SAFE scores of EMP metadata and taxa. The top 10 metadata
identified by tmap are highlighted (markers with edge color of gray) and annotated with their names. Marker size is scaled according to SAFE
enriched score. Colors of metadata are the same as that in the ranking, and taxa are in red. ¢ Co-enrichment network of EMPO classes. Node
colors are based on EMPO classes. Edge width of the network is the same as that of Fig. 5. Interconnections among the nodes in the network
reflect the hierarchy of EMPO levels. Child classes of higher levels are connected to their parent classes of lower levels and are interconnected to
each other. d Co-enrichment network of host metadata (host scientific name). Classification of the hosts are curated manually and colored
accordingly. The co-enrichment network indicates that hosts of the same class appear to be more co-enriched when accounting for their
association with the Earth’s microbiomes
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way. Furthermore, geographical covariates, such as eleva-
tion and latitude, were ranked among the classes of EMPO
level-2 or level-3, suggesting their roles in characterizing
environment types. It is also worth noting that technical
indicators, such as extraction center, sequence length, and
platform, were among classes of EMPO level-2 and there-
fore needed to be considered as strong confounding fac-
tors in the meta-analysis of the EMP samples (Fig. 7a, b).

In addition, tmap was used to construct a co-enrich-
ment network of the EMPO metadata to reveal their in-
terrelations. As shown in Fig. 7c, the EMPO classes were
interconnected in a network whose configuration reflects
their hierarchy levels, with nodes of lower level to have
more connections with other nodes in the network. A
further analysis of the host-associated samples revealed
finer interrelations between hosts and their microbiome
stratification, which could complement the EMPO sys-
tem with more detailed classifications (Fig. 7d, Add-
itional file 10: Figure S10). We also tried to identify
driver taxa of different environment types by including
both metadata and taxa in a TDA network. The result
showed that distinct groups of microbial taxa were
enriched with different EMPO level-1 classes (Fig. 7c,
Additional file 9: Figure S9). Taken together, applying
tmap to the large-scale EMP dataset enabled us to
effectively extract the hidden multiscale ecological pat-
terns and interrelations of environment types associated
with the earth microbiome and to identify their detailed
stratification for finer classifications.

Discussion and conclusions

tmap is an integrative method for analyzing population-
scale microbiome variation, allowing both stratification
of complex microbiome landscape and association of
metadata of hosts or environmental types. This method
is powered by the Mapper algorithm [31] for topological
data analysis, which has been shown effective in sum-
marizing large-scale high-dimensional datasets and in
capturing complex patterns. In contrast to other widely
used linear regression-based methods, including envfit,
adonis, and ANOSIM, tmap is capable of identifying
complex nonlinear patterns in both synthetic and real
microbiome datasets, allowed by the employed subnet-
work enrichment analysis. Furthermore, the subnetwork
enrichment analysis enables tmap to calculate the SAFE
scores for systematically mapping all host metadata onto
the underlying microbiome variation to extract their as-
sociations and interrelations. The potential of tmap in
population-scale microbiome studies was extensively
demonstrated in our re-analysis of three published data-
sets [5-7], i.e., nonlinear trends and subpopulation en-
richments of microbial taxa identified in the FGFP
dataset, microbiome stratifications associated with coun-
tries and lifestyles revealed in the AGP dataset, and
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associations of microbiomes with earth environment
types in different scales illustrated in the EMP dataset.
These results indicated that tmap is capable of bringing
more specific and comprehensive insights to the micro-
biome datasets with the related population metadata.

To achieve a better performance of tmap on a given
microbiome dataset, we provide clustering and topo-
logical covering parameters that can be tuned, along
with optimization functions for their choice (http://
tmap.readthedocs.io). As the Mapper algorithm employs
density-based clustering and discards unclustered sam-
ples, tmap would perform better with a larger dataset
that includes more data points from a microbiome land-
scape to construct a more faithful topological network
representation. Another important aspect of the algo-
rithm is the choice of the filter functions, which depends
on the nature of the studied dataset and research ques-
tions to be addressed. In practice, dimension reduction
methods are the most commonly used filters [30]. For
microbiome data, one such method is PCoA, which has
helped reveal many biological insights, such as micro-
biome variations among human body sites [51]. Major
components of microbiome variation can be captured by
the first two or three PCs of PCoA in microbiome stud-
ies [5-7], but there may still be a large quantity of vari-
ation remained in other PCs. For instance, there is a
relatively large proportion of variance uncaptured by the
first two PCs (67.91%, 87.10%, and 80.71% for the FGFP,
AGP, and EMP datasets), reflecting the dimensional na-
ture of these microbiome variations (Additional file 11:
Figure S11). It is worth noting that tmap has an advan-
tage of recovering the distance information from the
original high-dimensional space that is not captured by
the PCs used as filters, such as the first two PCs of
PCoA (Additional file 12: Figure S12). As illustrated in
Additional file 13: Figure S13, the clustering step of
tmap uses the original distance to calculate and recover
distinct clusters of samples in their original high-
dimensional space, which otherwise might be superim-
posed on each other due to the loss of variation in the
projection space. As a result, tmap is able to capture far
more variation than that in the projection space by the
PCs used as filters (tmap vs PCoA, regression R? of 0.80
vs 0.51 for the FGFP dataset using PC1 and PC2 of PCoA,
see the “Methods” section and Additional file 14: Figure
S14 for more details). The recovered variance is also evi-
dent by comparing the projected distances between sam-
ples within a cover to their network distances constructed
by tmap (tmap vs PCoA, CV of 1.90 vs 0.55 for the FGFP
dataset, see Additional file 15: Figure S15 for other
datasets).

In principle, tmap can use more than two PCs as fil-
ters, but increasing the number of filters (e.g., n) will
lead to an exponential increase in the number of covers
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to be generated (e.g., 10” covers for a resolution of 10 on
each filter), which then will result in too few samples to
be clustered or a TDA network too sparse to have suffi-
cient connectivity among nodes (see the “Methods” sec-
tion for more details on network sparseness). As shown
in Additional file 14: Figure S14, using the first four PCs
as filters resulted in a TDA network with high sparse-
ness (e.g., 82.88% for the FGFP dataset in PCoA). To en-
sure that there are enough and dense samples to be
binned within each cover for clustering analysis and to
obtain a TDA network with sufficient connection be-
tween nodes, we used only the first two PCs of PCoA
(or two-dimensional projection in t-SNE or UMAP) as
filters in tmap.

Although regression improvement can be achieved by
projection using more PCs (or components to be pro-
jected), the performance of tmap in capturing the variation
of the original high-dimensional space of microbiome sam-
ples appears robust to the number of PCs used as filters
(tmap vs projection space, regression R* of 0.64 +0.10 vs
0.46 + 0.14, Additional file 14: Figure S14). Otherwise, the
use of many PCs (such as four PCs) will lead tmap to gen-
erate a TDA network with few connections among nodes
and therefore will compromise its ability to recover suffi-
cient original microbiome variation (Additional file 14:
Figure S14).

In the case that a set of target variables (e.g., a subset
of metadata or microbiome features, rather than the
overall microbiome variation) are of interest, we propose
a supervised strategy to help choose the most suitable
PCs to be used as filters. This strategy is based on the
proportion of total variance explained by each PC [52],
multiplied by the enriched SAFE scores of the target vari-
ables, to rank and select a subset of PCs as filters for
final TDA network construction (see the “Methods” sec-
tion and Additional file 16: Figure S16 for details). Apply-
ing this strategy to the FGFP dataset showed that the first
two PCs (PC1 and PC2) actually gave the largest aggre-
gated scores when all the metadata were taken as target
variables (42.39% of the cumulative aggregated score).
Moreover, given different target variables of interest, dif-
ferent PCs may be selected as the most informative filters
(e.g., PC 8, 3 for age and PC 1, 2 for BSS in the FGFP
dataset).

In addition to PCoA, which is widely used in micro-
biome analysis [13], other dimension reduction methods
can also be used as filters, especially nonlinear and
large-scale methods, such as t-SNE [29] and UMAP [27].
To examine the robustness of different dimension reduc-
tion methods as filters in tmap to detect host-microbiome
associations, we applied PCoA, t-SNE, and UMAP to the
FGFP dataset and compared their results with that of
envfit. All three methods shared a significant common
subset of host covariates in their top 10’s (4 in top 10,
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permutation test p value = le %, see the “Methods” section
for details, Additional file 17: Figure S17). Furthermore, all
three methods consistently supported the observed differ-
ences in the effect size of association for the four host co-
variates as identified in the comparison between tmap and
envfit (Additional file 17: Figure S17). In future research,
one may expect that it is possible to combine the results
from different parameters and filters, to construct an inte-
grative TDA network for multiscale mapping [53] and for
large collections of microbiome datasets.

Subnetwork enrichment analysis of the SAFE algo-
rithm allows tmap to transform the values of a target
variable into a vector of SAFE scores, corresponding to
each node in a TDA network. Therefore, the association
patterns of target variables can be compared quantita-
tively by their vectors of SAFE scores, using ordination
or co-enrichment analysis (Fig. 1). For each target vari-
able, a network-level association (designated SAFE
enriched score) can be obtained by filtering and sum-
ming its SAFE scores of individual nodes (see the
“Methods” for details). Like the R-squared in linear
regression, the SAFE enriched score can be used as an
effect size to compare between different host covariates
for their associations with microbiome variation. It is
worth noting, however, that the SAFE score is different
from the correlation coefficient in linear regression in
two aspects. First, it is able to detect subtle and complex
associations, both linear and nonlinear, as demonstrated
in our analysis of synthetic and real-world datasets.
Second, SAFE scores can form a vector of values, repre-
senting all local subnetwork associations, which can be
subjected to further analysis of the interrelationships be-
tween metadata. In contrast, the correlation coefficient
in linear regression is only a value of correlation, which
cannot be used to analyze interrelations between the as-
sociation patterns of metadata, as we have done with
SAFE scores.

Furthermore, SAFE scores allow us to use co-enrichment
analysis to scrutinize whether interrelations between target
variables represent confounding effects or biological associ-
ations with microbiome variations. For instance, a signifi-
cant co-enrichment between a host covariate (such as
Gender) and a taxon (such as Roseburia) may represent the
outcome of host-microbiome interactions. Instead, a
co-enrichment between a medication (such as f-lactam
antibiotic) and a disease (such as chronic fatigue syn-
drome) is likely due to a confounding effect. Therefore,
although SAFE scores are calculated independently (via
independent random shuffle) for each metadata or
microbiome features, co-enrichment analysis would
capture both biologically meaningful intercorrelations
and confounding effects. Interpretation of these interre-
lations should be based on our knowledge of host-
microbiome interactions and the background of studies,
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as we have demonstrated in the analysis of the FGFP,
AGP, and EMP datasets.

In conclusion, tmap is an integrative framework for ana-
lyzing population-scale microbiome variations and their as-
sociation with hosts or environments. Based on topological
data analysis, it is able to capture complex microbiome vari-
ations from high-dimensional datasets and recover the lost
variation in their low-dimensional projection or embedding.
Moreover, TDA network representation and subnetwork
enrichment analysis endows tmap with the ability to extract
complex host-microbiome association patterns, especially
nonlinear associations that are hard to detect with currently
available methods. In microbiome research, given our inad-
equate knowledge of the dynamics and complexity of host-
microbiome interactions, especially at population-scale,
innovative data-driven methods for discovering complex
patterns of host-microbiome association are urgently
needed [54]. In this regard, tmap could provide insights
from both microbiome stratification and association
analysis to inform further hypothesis-driven microbiome
studies. tmap is provided as a software freely available at
https://github.com/GPZ-Bioinfo/tmap, along with detailed
tutorials and online documents (https://tmap.readthedocs.io).

Methods
Mapper algorithm for microbiome data analysis
tmap is based on the Mapper algorithm [31] for topo-
logical data analysis (TDA) to transform high-dimensional
microbiome profiles of individual samples into a network
representation that captures both local and global topo-
logical patterns from the profiles (Fig. 2a). This algorithm
begins with projection of high-dimensional data points
(representing microbiome profiles) into a low-dimensional
space using filter functions. Usually, dimension reduction
methods are used as filters to generate coordinates of data
points in a low-dimensional space [30]. For instance, when
PCA is used for dimension reduction, either one or two
principal component(s) can be used as filter. If PC1 is used
as filter, the coordinates of the points along PC1 will be
generated. If both PC1 and PC2 are used as filter, the co-
ordinates of the points in a two-dimensional space will be
generated. Other functions may also be used as filter, such
as the eccentricity or density of a dataset, or even a subset
of the original dimensions, as long as they can generate
coordinates of data points in a low-dimensional space.
After projection of the data points into a low-dimensional
space, the covering step of Mapper partitions the space into
a number of overlapping covers with equal size. The purpose
of covering is to use covers of the low-dimensional space to
capture its topological properties, i.e, a cover represents a
local neighborhood of the projected data points. Therefore,
a collection of covers represents all neighborhood informa-
tion of the projected data points. To connect neighborhoods
that are close to each other, overlaps between covers are
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retained in the covering step of the algorithm. As a result,
covers and their overlaps capture both local neighborhood
of points and their global interconnections.

Information of original distances between data points
might be lost after dimension reduction or projection.
For example, two points that are far apart in the high-
dimensional space might be projected as close neighbors
in the low-dimensional space. The clustering step of
Mapper is performed to retain the distance information
of the high-dimensional space. For each cover, points
binned within it are clustered into different clusters
based on their distances in the original space rather than
their projected distances. For instance, after applying
PCoA to microbiome profiles, all the subsets of samples
that fall within each cover (a two-dimensional cover if
the first two coordinates are used, such as PC1 and PC2)
will be clustered independently. As a result, samples
within a cover would be clustered into different clusters
if they are quite different in their original microbiome
profiles, although they might be close to each other in
the projection space of PC1 and PC2.

The last step of Mapper is to generate a TDA network,
in which a node represents a group of samples that are
clustered together and a /ink occurs between two nodes
if they share common samples in their clusters. The
TDA network provides a compressive representation of
high-dimensional microbiome profiles for exploring
microbiome variations and for stratification and associ-
ation analysis.

SAFE algorithm and SAFE score

Once a TDA network of microbiome profiles is con-
structed, the values of metadata or microbiome features
can be individually mapped to the network (Fig. 2b). For a
given metadata, e.g., age, this mapping assigns a numerical
attribute (called mapping score) to each node, by calculating
its averaged values among samples in the node (e.g., mean
age). We assume that a target variable non-randomly dis-
tributed among the TDA network indicates that its associ-
ation with the underlying microbiome profiles is significant.
Intuitively, if the nodes with high mapping scores are neigh-
bors, interconnected to each other in the network, a pattern
of subnetwork enrichment of these nodes can be observed.
The significance level of the observed pattern can be calcu-
lated by permuting the mapping scores along the whole
network. A non-random enrichment pattern will have sig-
nificantly higher scores for the subnetwork compared to
the randomly permuted scores.

To implement the above idea, tmap adopts the spatial
analysis of functional enrichment (SAFE) algorithm for
network enrichment analysis [36]. The algorithm was
developed as a systematic method for annotating bio-
logical network and examining their functional associ-
ation. We modified the original algorithm to calculate
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an enrichment score (designated SAFE score) for each
node in a TDA network for a given target variable (meta-
data or microbiome features), as described in the follow-
ing steps (and as depicted in Fig. 2b):

1) This algorithm starts with a TDA network and a
target variable of metadata (e.g., age) or taxa. For
each node u in the network, SAFE defines a local
neighborhood of u by identifying any other nodes
that are closer than or equal to a maximum
distance threshold (d) to u. Node distance is
measured as the shortest path length between
nodes. By default, the maximum distance threshold
d is set to be equal to the 0.5th percentile of all
pairwise node distances in the network.

2) For each node, SAFE sums the values of neighbor
nodes for a target variable as an observed
neighborhood score (Sopserved). Meanwhile,
permuted neighborhood scores (Spermuted are
obtained by randomly shuffling the target variable
among nodes in the network. The enrichment
significance of the observed neighborhood score (P)
is measured as the probability that a random score
will fall between the observed neighborhood score
(Sobserved) and the largest value of all scores (via
ranking of both observed and permuted scores, as
illustrated in Fig. 2b). Finally, the enrichment
significance (P) is transformed into an enrichment
score (O), designated as SAFE score, which is
normalized in a range from 0 to 1 as below:

— logl(,( max <Pu ,ﬁ))
O, = 1
o (1)

where 7 is the number of shuffles, P, is the significance
of enrichment of node u, and O, is the SAFE score of
node u. Random shuffle is performed independently for
each target variable.

3) A node is considered to be significantly enriched
under a cutoff p value of 0.05 (which can be tuned
in tmap). This cutoff p value can be translated to a
cutoff SAFE score as below:

~log,,0.05
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Under the above cutoff value (O.yofr), SAFE enriched
score is defined as the sum of SAFE scores of all
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significantly enriched nodes in a TDA network to meas-
ure the overall enrichment significance in the whole net-
work, which can be used to filter or rank metadata or
taxa.

Microbiome datasets and sample metadata

The FGFP, AGP, and EMP microbiomes were collected
from the data repositories provided in their publications,
along with sample metadata (host phenotypes or envir-
onment types). We used the available OTU/sOTU tables
from the original studies to avoid bias of 16S rRNA se-
quence data processing for result comparison [55]. The
FGFP dataset comprises 1106 fecal samples and 69 iden-
tified host covariates, which were classified into seven
metadata categories (anthropometric, lifestyle, blood pa-
rameters, health, bowel habit, dietary habit, and medica-
tion). The AGP dataset comprises 9496 fecal samples
and 451 self-reported metadata. The EMP dataset com-
prises 2000 samples, and their metadata was downloaded
from the EMP FTP site (see the “Availability of data and
materials” section). The original OTU/sOTU tables were
rarified and normalized to obtain an equal number of
reads for each sample before further analysis. Beta-
diversity (Bray-Curtis or unweighted UniFrac) distance
matrix was calculated with scikit-bio (http://scikit-bio.
org), followed by principal coordinates analysis (PCoA).
For the AGP and EMP dataset, in which representative
sequences were available, we re-annotated their tax-
onomy using the usearch sintax software (using a cutoff
bootstrap value of 0.8) [56, 57]. We used genus-level
profiles for the analysis in this study. To perform net-
work enrichment analysis with tmap, categorical meta-
data was transformed into one-hot encoding with scikit-
learn. Only metadata that is collected for at least 90% of
samples was retained for further analysis. Missing values
were filled with medians for all the retained metadata.

Parameters for topological data analysis and network
enrichment analysis

We used the same beta-diversity as the original studies
(Bray-Curtis distance matrix for FGFP, unweighted Uni-
Frac distance matrix for AGP and EMP) for result com-
parison. tmap used the first two principal coordinates of
PCoA as lenses (filters). Different topological and cluster-
ing parameters were chosen for the datasets depending on
their sample size and microbiome variation (FGFP: over-
lap = 0.75, resolution =40, and percentile eps threshold =
95th; AGP: overlap = 0.95, resolution = 120, and percentile
eps threshold = 90th; EMP: overlap = 0.75, resolution = 45,
and percentile eps threshold = 95th). An online guide is
available on how to choose proper parameters for a given
dataset (see the “Availability of data and materials” sec-
tion). After obtaining a TDA network for a dataset, meta-
data or taxon abundance was individually mapped to the
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network by enrichment analysis, using the SAFE algo-
rithm. p values were calculated for the observed SAFE
scores for each node in the TDA network by permutation
test (iterations = 5000) and were FDR corrected for all the
nodes. Nodes with a p value of >0.05 (FDR corrected)
were considered significantly enriched and were used to
calculate the SAFE enriched score for metadata or taxa.

Identifying and ranking microbiome-associated covariates
For the FGFP dataset, ranking of the target variables of
microbiome-associated host covariates was compared
between envfit, adonis, ANOSIM, and tmap. Ten thou-
sand permutations were used in envfit, adonis, and
ANOSIM. Effect sizes were used to rank the covariates
by these methods (R-squared of emvfit and adonis, R
value of ANOSIM and SAFE enriched score of tmap).
Kendall’s tau test was used to statistically compare the
rankings of envfit and tmap. Significant p value can be
obtained for a consistent ranking of a subset of covari-
ates, which are examined in a stepwise test from top to
bottom. Results of the first two stepwise test were absent
because Kendall’s tau test is valid only for a ranking with
more than two covariates.

Synthetic microbiomes and simulation of associations
between microbiome and metadata
Synthetic microbiome datasets were generated with
SparseDOSSA, using a Bayesian hierarchical log-normal
distribution model to simulate species abundances [37].
Model parameters are estimated by fitting to a reference
microbiome dataset. Four microbiome datasets, includ-
ing the default template dataset of SparseDOSSA, FGFP
dataset, AGP dataset, and EMP dataset, were used to
train the model independently and the best one was
chosen to further simulate associations of metadata
(Additional file 1: Figure S1). Associations between meta-
data and microbiome were simulated by mapping values
of metadata onto the PCoA spaces of microbiome vari-
ation (PC1 and PC2, using Bray-Curtis distance matrix)
via various functions. Both linear and nonlinear associa-
tions were simulated with the corresponding mapping
functions as follows.

Linear associations were generated by the following
function:

f(PC1,PC2) = a x PC1 + b x PC2

where the coefficients 4 and b are randomly chosen
from the range of [- 1, 1] for each metadata; PC1 and
PC2 are the coordinates of a microbiome sample in the
two-dimensional PCoA space.

Nonlinear associations of multiple local enrichments
were simulated by mapping Gaussian mixtures onto the
PCoA space, using the following function:
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where # (that is 2 or 3 in our simulation) is the number
of Gaussians to be simulated in the mixture; (u;;, ;) is
the center of the ith Gaussian in the PCoA space, and o
is the standard deviation; PC1 and PC2 are the coordi-
nates of a microbiome sample in the two-dimensional
PCoA space.

In order to use ANOSIM for microbiome association
analysis, we also simulated categorical variables with linear
or nonlinear patterns of associations. Binary discretization
of continuous variables (with simulated linear associations
as described above) was performed to obtain categorical
variables. Based on the median of continuous variable, data
points (samples in a PCoA space, PC1 and PC2) were
assigned to two categorical groups (labeled as “True” if
larger than the median, labeled as “False” otherwise,
Additional file 18: Figure S18). For the simulation of cat-
egorical variables with nonlinear associations, we used an
approach similar to the above simulation of multiple local
enrichments. Instead of Gaussian mixtures, this approach
picks multiple circular areas from the PCoA space and as-
signs samples within the areas as “True” and other samples
as “False.” First, a number of random samples were selected
from the PCoA space to be used as centers. For each cat-
egorical variable, this number is randomly chosen in the
range from 1 to 5. Second, for each area, the 50 samples
that are closest to its center (including the center itself)
were included, according to their Euclidean distances on
the PCoA space. If a selected sample is already included in
other circular areas, it will be skipped and the next closest
one is considered. Therefore, the ratio of sample sizes be-
tween the two categorical groups (“True” or “False”) was
kept in the range from 1:9 to 1:1, given that there were a
total of 500 samples in our simulation. As in the case of
continuous variables, a mixed simulation comprises both
linear and nonlinear associations, in a ratio of 1:3 in their
numbers of categorical variables.

We used the default template microbiome dataset and
model parameters of SparseDOSSA to generate synthetic
microbiomes consisted of 500 samples. Three scenarios
were designed to compare the performance of tmap and
other methods in detecting associated metadata, includ-
ing scenarios of linear associations only, nonlinear asso-
ciations only, and the mix of both of them. In the first
two scenarios, 50 associated metadata were generated
according to the above mapping functions as positive
cases to be detected; 50 random shuffles of the gener-
ated metadata were used as negative cases. In the mixed
scenarios, four kinds of associations (200 in total, 50 for
each kind) were generated and mixed, including Gauss-
ian mixture with three symmetric centers, Gaussian mix-
ture with three asymmetric centers, Gaussian mixture
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with two centers, and linear distribution as described
above. At the same time, random shuffles of the generated
metadata were used as negative cases. Performance in de-
tecting positive cases of associated metadata was com-
pared between tmap (measured by SAFE enriched score)
and other methods (measured by p value) via receiver op-
erating characteristic curve (ROC) and area under the
curve (AUC) score. Significant difference between AUC
scores (100 repeats of simulations) was accessed by
Mann-Whitney U test. More details and the codes for the
simulation can be found in the online Jupyter notebook
(see the “Availability of data and materials” section).

Stratification, enterotype, and ordination analysis with
SAFE scores

Taxa-driven stratification of the TDA network of micro-
biome variation was obtained by identifying the most
significant enriched genus (with the highest SAFE score
among all genera) for each node in the network. A cutoff
value of SAFE score > 0.35 (corresponding to a negative
log-transformed p value of 0.05 with 5000 iterations by
the SAFE algorithm) was used to filter out nodes with
no significant genus. The stratification was visualized by
coloring the TDA network according to the enriched
genera, which resulted in enterotype-like clusters in the
microbiome landscape. Each cluster was highlighted by a
color specific to its enriched genus. For comparison,
traditional enterotype analysis was also performed using
the partitioning around medoids (PAM) method (Jensen-
Shannon divergence, and a preset number of three clus-
ters) [23]. Ordination of the SAFE scores of metadata and
taxa was done by PCA, to visualize how they relate to each
other after mapping to the microbiome variation. Meta-
data or taxa that share similar enrichment subnetworks
will be close to each other within the PCA space.

Co-enrichment network analysis

SAFE scores of metadata or taxa contain information
about their co-enrichment patterns on a TDA network,
which can be used to calculate their interrelations when
accounting for their association with microbiome vari-
ation. First, for each feature (metadata or taxa), we sepa-
rated all the nodes into two groups: one group of
enriched nodes (as defined in the above SAFE algorithm)
and another group of the remaining nodes. Therefore,
for each pair of features, a contingency table can be ob-
tained based on the combination of their node groups.
Next, Fisher’s exact test was used to examine the inde-
pendence of node groups, and its p value was used for
co-enrichment network construction. Only positive depend-
ence of node groups was considered as a co-enrichment
relationship. The resulted network was filtered using a
threshold of 0.5th percentile of the p values (FDR corrected).
The negative log-transformed p value of the test was used as
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edge weight for each pair of co-enriched features in a co-
enrichment network.

Selection and evaluation of filter functions in tmap for
microbiome data analysis

We used PCoA for the projection of the FGFP micro-
biome profiles to a low-dimensional space and demon-
strated a strategy on the selection and evaluation of PCs
as filters in tmap given a chosen set of target variables of
interest. First, each individual PC was used as the only
filter in tmap to construct a TDA network. After that,
SAFE enriched scores of the chosen target variables were
calculated based on the network and were summed to
quantify the overall association of all the variables. The
summed score for each PC was then multiplied by the
ratio of variance explained of the PC to calculate an ag-
gregated score. At last, all the PCs were ranked according
to their aggregated scores. Accumulation curve of the
ranked aggregated scores was then used to determine
how many and which PCs to be selected as filters in a
final analysis given a specified threshold value (see
Additional file 16: Figure S16 for a workflow of the
steps). The specified threshold value determines how
much of the cumulative aggregated scores to be kept
by the selected PCs (e.g., 70%).

Different dimension reduction methods, including
PCoA, t-SNE, and UMAP, were compared to evaluate
the robustness of tmap. In the comparison, two compo-
nents were selected from each method to be used as
filters in tmap. And all the methods used the same set of
parameters (overlap = 0.75, resolution =40, and percent-
ile eps threshold = 95th). To assess the significance of the
observed number of common covariates in the top 10’s
of the rankings from each method, permutation test is
used. In detail, three pseudo-rankings were obtained by
permuting the 69 covariates three times independently for
each iteration to calculate a random number of common
covariates in the top 10’s from the pseudo-rankings. After
10,000 iteration, the observed value was compared with
the random values to obtain its rank (r) in a descending
order, and p value was calculated as r/10000.

Recovering complex microbiome variations from high-
dimensional space

tmap is able to recover the original complex microbiome
variations that are lost in a low-dimensional projection
space, such as in the PCoA space of PC1 and PC2
(Additional file 13: Figure S13). Linear regression ana-
lysis was performed to quantify the variation captured
by tmap than that in the low-dimensional projection
after using filters of dimension reduction methods. R-
squared (R®) was obtained from the linear regression
between the original distance in the original high-
dimensional microbiome profiles and the projected
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distance in the projection space, or the network dis- Supplementary information
tance in tmap, respectively. In this study, the original  Supplementary information accompanies this paper at https//doi.org/10.
distance is the Bray-Curtis distance between samples in ~ !186/s13059-019-1871-4.

their original high-dimensional microbiome profiles. 1
Additional file 1: Figure S1. Comparison between simulated data and

The projected c.hStance 18 .the‘ Euclidean distance be' training data for different microbiome datasets via principal coordinate
tween samples in the projection space. Network dis- analysis (PCoA). Bray-Curtis distance matrix is used in the analysis. PCOA
tance was measured as the minimal number of edges to plots show the similarity between simulated data and training data of (a)

) FGFP, (b) EMP, () AGP and (d) the demo data of SparseDOSSA tively.
be traversed (or shortest path) between each pair of » () EMP () AGP and () the demo data of Sparse respectively
Additional file 2: Figure S2. Performance of tmap in detecting linear

nodes. Because network distances were calculated be- and nonlinear patterns of simulated microbiome associations for different
tween nodes, in which nodes are groups of samples, the number of metadata. Receiver operating characteristic (ROC) curves are
corresponding original distances between samples from used to compare the performance between (a) tmap and adonis, (b)

t d ( ) leulated bel . tmap and ANOSIM, (c) tmap and envfit , in detecting microbiome-
WO nodes (u, v) are calculated as below: associated metadata. Categorical metadata are used for the comparison

between tmap and ANOSIM. Continuous metadata are used in other
1 I cases. Three scenarios of association with different number of metadata
doriginal =— ZZ d(uh Vj) are examined (including linear-only, nonlinear-only and a mix of both).
nm === The shaded areas indicate 95% confidence intervals (100 repeats). (d)
One-sided (greater) t-test is used to test the significance of improved area
under the curve (AUC) scores of tmap over the other three methods

where n and m are the number of samples in node u (enviit, adonis and ANOSIM respectively).

and v respectively; u; is the ith sample in node #, and Vj Additional file 3: Figure S3. lllustrations of tmap in the detection of
the jth sample in node v; and d (u;, v)) is the Bray-Curtis associations of simulated metadata. Color legend (from blue to red)
distance between sample u; and vj. indicates values of metadata (from small to large). Network color

In this study, we defined a sparseness metric of a TDA represents SAFE scores on each node.
network to quantify the overall connectivity among its
nodes as below:

Additional file 4: Figure S4. Comparison of rankings of host covariates
associated with the FGFP microbiomes using envfit, adonis, ANOSIM and tmap.

Additional file 5: Figure S5. Example of large variances of a host covariate
in a local subnetwork that lead to low SAFE scores. Left, PCoA plot of samples
2 X |{(u, V) | u and v are connected}| colored according to the host covariate of time since previous relief. Right,
Sparseness = 1- n(n+1) TDA network colored according to the SAFE scores of time since previous
relief. The zoomed area shows a local subnetwork with a large variance of the
covariate, which results in low SAFE scores. Node colors are based on their

where 7 is the total number of nodes in the TDA network SAFE scores, from red (large values) to blue (small values).

and u and v are two nodes in the network. Self-connections Additional file 6: Figure S6. Illustrations of TDA network enrichment

(e'g', u =v) are also counted. The greater the value of the analysis of metadata compared with PCoA. (ac.e) PCoA plots of microbiome
. 1. samples of the FGFP cohort, colored according to the covariates of

Sparseness of a TDA network indicates that the larger GenderfF, Time since previous relief and HDL cholesterol, respectively. (b,d,f)

number of node pairs that are not connected and there- TDA network enrichment scores (SAFE scores) of the covariates of Gender:F,

fore cannot be measured by the network distance. Time since previous relief and HDL cholesterol, respectively. Colors are

. . . . . based on their values, from red (large values) to blue (small values).
Comparison between low-dimensional projection and
Additional file 7: Figure S7. In-depth stratification of the FGFP

tmap using the above regression analySIS was performed microbiomes. (a) Stratification based on traditional enterotype analysis.

for different dimension reduction methods (including Nodes are colored based on enterotype driver taxa. (b) Stratification based
. on the most enriched taxon, which is identified from all taxa by comparing

PCoA, PCA, t-SNE, UMAP) and also for different their SAFE scores on each node. Node colors are based on the identified

number of components used as filters (from top two taxon. Only taxa enriched in more than 100 nodes are highlighted.

to four Components). We also Compared Samples that Remaining unstratified nodes (with no enriched taxa) are colored in gray.

. sl N . . Additional file 8: Figure S8. PCA of the SAFE scores of taxa and host
are binned within a same cover in the projection space covariates shows the overall pattern of their associations with the AGP

to measure the difference in variance captured by microbiomes. The top 10 covariates and taxa identified by SAFE enriched
different methods; that is, distances between samples scores are highlighted (markers with edge color of gray) and annotated
or nodes from different covers were not included in with their names. Host.covanates are c.olo.red based on njetadata

. X . category, and taxa are in red. Marker size is scaled according to the SAFE
the comparison. The obtained network distances and enriched score of metadata or taxa.
projected distances (from within each cover) were nor- Additional file 9: Figure S9. Comparison of TDA network enrichment
malized into the range of [0, 1], by dividing the dis- patterns between classes of EMPO level-1 and ENVO_biome level-1.

Enriched subnetworks of the EMP microbiomes are identified and colored

tance to the maximum distance from the overall based on the classes of EMPO level-1 (a) and classes of ENVO_biome

network or the overall projection space respectively. level-1 (b), respectively. Only enriched nodes are colored and showed in
Coefficient of variation (CV), the ratio of the standard the network. The remaining nodes are colored in gray.

deviation to the mean, was calculated for both the net- Additional file 10: Figure S10. TDA network enrichment patterns of
work distances and the projected distances to compare host-associated microbiomes. Nodes in the TDA network of the EMP

the variance Captured by each of the methods (tmap microbiomes are colored based on their enriched host. Classification of the

. N . . R TPII hosts are curated manually. Only enriched nodes are colored and showed in
vs dimension reduction) when constrained within in- u vatly. onty enn wed i

dividual covers. ,

the network. The remaining nodes are colored in gray.
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Additional file 11: Figure S11. Proportion of total variance explained
by each PC in PCoA of the FGFP, AGP and EMP datasets.

Additional file 12: Figure S12. Regression between original distance and
projected distance or network distance for the FGFP, AGP and EMP
datasets respectively. PC1 and PC2 of PCoA are used as filters for tmap analysis.

Additional file 13: Figure S13. Recovering microbiome variations from
their original high dimensional space by tmap. After the projection of high
dimensional microbiome profiles into a low dimensional space (such as PC1
and PC2 of PCoA), original variations might be lost. For example, two
distinct clusters of samples (colored orange and blue) from the original
space are superimposed on each other in the projection space. The
clustering step of tmap performs clustering analysis using their original
distances to recover the separated clusters from the original space. The
recovered variation is captured by tmap in its network representation.

Additional file 14: Figure S14. Better regression performance of tmap
in capturing microbiome variations in high dimensional space than
dimension reduction methods. Each panel shows the linear regressions
between the original distance and the projected distance (at the left), or
the network distance (at the right), for different dimension reduction
methods (panels along the row), and for different number of
components used as filters (panels along the column). R-squared (R?) is
shown for each regression. The proportion of pairs of nodes that are not
connected is indicated by the TDA network sparseness metric.

Additional file 15: Figure S15. More variance captured by TDA network
distance in tmap than the projected distance for samples within a same cover.
For each pair of nodes constructed from the same cover, projected distances
(colored blue) and network distances (colored red), both normalized into the
range of [0, 1], are plotted against their original distances. Coefficient of
variation (CV) is shown to indicate the variances captured for different
datasets: (a) the AGP dataset, (b) the EMP dataset, (c) the FGFP dataset.

Additional file 16: Figure S16. \Workflow of evaluation and selection of
PCs as filters in tmap for a subset of target variables. The workflow begins with
principal coordinates analysis (PCoA) of a microbiome dataset to obtain
individual PCs and the proportion of total variance explained by each PC.
Aggregated scores of the chosen target variables are then calculated for each
PC by using the PC as filter in tmap. Ranking and accumulation curve of the
aggregated scores is then employed to select the most suitable PCs for a final
tmap analysis, according to a specified threshold of the cumulative
aggregated scores. Details of score calculation are shown alongside each step.

Additional file 17: Figure S17. Comparison of different reduction
methods as filters in tmap. Bristol stool scale (BSS), time since previous
relief, mean corpuscular hemoglobin (MCH) and shift work are indicated
in red. The four common host covariates in the top 10's of the rankings
from different methods are shown in bold text.

Additional file 18: Figure S18. lllustrations of simulated nonlinear
associations for categorical metadata.

Additional file 19: Text S1. Descriptions of the simulations of circular
and spiral association patterns.

Additional file 20: Table S1. Comparison of the performances in
detecting simulated metadata between envfit, adonis, ANOSIM and tmap.
Additional file 21: Table S2. Detection of host covariates significantly
associated with the FGFP microbiomes using envfit, adonis, ANOSIM and tmap.

Additional file 22: Table S3. Co-enrichment subnetworks of pet past 3
months and its co-enriched features of the FGFP microbiomes.

Additional file 23: Table S4. Ordination results of the SAFE scores of
metadata and taxa for the datasets of FGFP, AGP and EMP.

Additional file 24: Table S5. Comparison of the stratification of the
AGP microbiomes between tmap and PAM based clustering.

Additional file 25: Review history.
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